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Abstract
The ability to precisely generate and manipulate three-dimensional (3D) vectorial optical fields is crucial for advancing
applications in volumetric displays, secure data encoding, and optical information processing. However, conventional
holographic techniques generally lack the capability to simultaneously control both light intensity and polarization
within a volumetric region, thereby limiting the full realization of complex 3D vectorial light fields. Here, we present a
metasurface-based platform for 3D vectorial holography that enables independent and programmable control over
axial intensity and polarization profiles within structured beam arrays. By decomposing complex volumetric
holographic targets into a dense array of non-diffracting beams—each governed by a tailored longitudinal response
function—we achieve broadband, high-fidelity reconstruction of vectorial light fields encoded in both spatial intensity
and polarization domains. Moreover, we demonstrate a vectorial encryption scheme that exploits the combined axial
intensity and polarization degrees of freedom to realize secure, key-based optical information encoding. This approach
provides a compact, integrable, and scalable solution for 3D vectorial holographic projection and volumetric vector
beam shaping, offering a versatile platform for high-capacity optical storage, secure communication, and emerging
quantum photonic technologies.

Introduction
Over the past few decades, the demand for precise

generation and manipulation of complex three-
dimensional (3D) optical fields has grown significantly,
driven by applications in optical data storage1–3, secure
information encryption4–7, laser beam shaping8,9, aug-
mented/virtual reality10–12, advanced optical trapping13,14,
and volumetric microscopic imaging15–17. Holography, as
a fundamental technique for recording and reconstructing
arbitrary wavefronts, offers unique advantages for 3D
visualization and volumetric light-field control18–20.
Nevertheless, conventional holographic approaches,

including those based on spatial light modulators (SLMs),
digital micromirror devices (DMDs), or bulky volumetric
media, often suffer from limitations in system integration,
efficiency, and their ability to fully exploit the vectorial
nature of light21–24. These challenges become particularly
critical when simultaneous modulation of both intensity
and polarization within a volumetric region is required,
thereby preventing conventional methods from achieving
true 3D vectorial holography.
Metasurfaces, which are ultrathin optical devices

composed of subwavelength scatterer arrays, have
emerged as a powerful platform for precise control of
multiple light-field parameters, including phase, ampli-
tude, polarization, and frequency25–36. This paradigm
shift has enabled the development of compact and effi-
cient holographic devices with unprecedented flexibility.
Most metasurface-based holograms reported to date
have primarily focused on phase and amplitude encod-
ing for scalar field modulation, with some extensions
toward two-dimensional (2D) vectorial holography.
Building upon Fresnel and Fourier holography, both 2D
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and 3D scalar holography have been demonstrated,
ranging from simple image projection to volumetric
reconstructions37–42. More recently, efforts have been
made to simultaneously control intensity and polariza-
tion, representing an important step toward vectorial
holography43–48. However, these demonstrations remain
largely restricted to 2D vectorial holography confined to
a single plane. Achieving full 3D vectorial holography,
which requires coordinated modulation of amplitude,
depth, and polarization across an entire volume,
remains a formidable challenge that calls for novel
design strategies extending beyond conventional meta-
surface principles.
In this work, we present a metasurface-based platform

for 3D vectorial holography, wherein the target volu-
metric image is decomposed into an array of structured
beams with independently programmable axial intensity
and polarization profiles. The longitudinal evolution of
each beam is determined by a tailored response function,
enabling the construction of high-density beam arrays
with spatially varying vectorial properties. As a proof of
concept, we experimentally implement multiple meta-
surfaces that encode broadband axial intensity shaping
together with independently tunable polarization states.
Leveraging this capability, we further demonstrate a
polarization- and depth-encoded encryption scheme, in
which information is securely embedded within a 3D
vectorial light field and can only be decrypted using key-
matched polarization and axial parameters. These results
establish a compact, scalable, and integrable framework
for 3D vectorial holography, opening new opportunities
for high-capacity optical communication, secure data
storage, and quantum information processing.

Results
Theory and principle
To achieve holographic projections of 3D vectorial light

fields that simultaneously embed both depth and polar-
ization information, we decompose the target field into an
array of quasi-non-diffracting beams, each with indepen-
dently engineered longitudinal intensity and polarization
profiles, as illustrated in Fig. 1a. To construct the desired
volumetric 3D vectorial holography, each beam within the
array is assigned a unique longitudinal response function
~Fp;q zð Þ that governs its evolution along the optical axis
(z), where p and q denote the row and column indices of
the beam in the array, respectively. As shown in Fig. 1b,
the longitudinal response function comprises a scalar
function Fp;q zð Þ defining the axial intensity profile, and a
Jones vectorial function that describes the spatially vary-
ing polarization state along the propagation axis. In
principle, the vectorial component can be represented as a
linear coherent superposition of two orthogonal circular
polarization basis states with z-dependent complex

weighting coefficients aLp;q zð Þ and aRp;qðzÞ, respectively.
Through the orthogonal circular polarization decom-
position, the complete longitudinal response function can
be expressed as

~Fp;qðzÞ ¼ Fp;qðzÞ½aLp;qðzÞj Li þ aRp;qðzÞjRi� ð1Þ

where jLi ¼ 1ffiffi
2

p 1
i

� �
and jLi ¼ 1ffiffi

2
p 1

�i

� �
denote the unit

vectors for left- and right-circular polarization (LCP and
RCP), respectively. The weighting coefficients satisfy the
normalization condition jaLp;q zð Þj2 þ jaRp;q zð Þj2 ¼ 1. There-
fore, the function ~Fp;q zð Þ can be decomposed into two
spin-dependent complex value functions, FL

p;q zð Þ ¼
Fp;q zð ÞaLp;q zð Þ and FR

p;q zð Þ ¼ Fp;q zð ÞaRp;q, corresponding to
two orthogonal LCP and RCP channels, respectively.

To realize these longitudinal profiles, we employ a
Fourier-like synthesis method, in which each beam is
constructed as a coherent superposition of discrete Bessel
beams with a series of longitudinal wavevectors evenly
spaced in the kz-domain, as illustrated in Fig. 1c. The
complex weighting coefficients of these Bessel compo-
nents are determined by projecting the desired long-
itudinal response functions onto the basic exponential
functions as (see Supplementary Section 1 for details)

AL=R
p;q;m ¼ 1

Z0

Z Z0

0
FL=R
p;q zð Þe�i2πZ0mzdz ð2Þ

where AL=R
p;q;m are complex-valued coefficients that control

the amplitude and phase of the m-th Bessel beam
component in the LCP or RCP channels, and Z0 defines
the axial extent of the modulated beam array. The discrete
spacing Δkz= 2π/Z0 of the superimposed Bessel compo-
nents further ensures mutual orthogonality of the Bessel
basis components over the defined axial range. Hence, the
complete generated 3D vectorial light field can be
expressed as the coherent summation of all the spin-
dependent Bessel functions across the full beam array,
which can be written as

~Eðρ; zÞ ¼
X
p;q

XN
m¼�N

J0ðkmρ kρ� ρp;qkÞeik
m
z z � AL

p;q;mjLi þ AR
p;q;mjRi

h i
ð3Þ

where J0 �ð Þ refers to the zeroth-order Bessel function of
the first kind, ρp;q refers to the lateral displacement of the

beam, and the transverse and longitudinal wavevectors kmρ

and kmz satisfy the dispersion relation kmρ
� �2

þ kmz
� �2 ¼

k0ð Þ2, where k0 is the wavevector in free space. Substitut-
ing z= 0 into Eq. (3) yields the initial complex field
distributions at the plane of the metasurface for both
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orthogonal polarization components. Based on the
profiles in the two polarization channels, the Jones matrix
profile of the metasurface eJmeta ρ;φð Þ can be determined to
realize 3D holographic projection with full vectorial field
manipulation, after deciding the polarization state of the
incident light.

To experimentally realize the desired vectorial light field
projection via the structured beam array, the metasurface
must be engineered to support subwavelength modulation
of phase, amplitude, and polarization. As illustrated in
Fig. 1d, the designed metasurface comprises an array of
rectangular-shaped amorphous silicon (α-Si) nanopillars
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Fig. 1 Design principles of 3D vectorial holography using longitudinally tunable beam arrays. a Schematic of the 3D vectorial holography
based on a z-dependent array of structured beams, with independently controlled axial intensity and polarization profiles. b Construction of the
target longitudinal response function, composed of the axial intensity envelope and polarization trajectory. The function can be decomposed into
complex value functions in the LCP and RCP bases. c Modulation strategy based on a superposition of 2 N+ 1 Bessel functions with uniform spacing
in kz-space. d Schematic of the metasurface architecture, composed of rectangular-shaped α-Si nanopillars on a SiO2 substrate. e Top-view schematic
of the dual-matrix holographic metasurface, where nanopillar dimensions and orientation encode the desired unitary Jones matrix at each pixel.
f Optical photographs and SEM images (top and tilted views) of the fabricated metasurfaces, designed for the independent axial intensity and
polarization manipulation
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with a height of 400 nm and a lattice period of 250 nm,
fabricated on a fused silica substrate. Furthermore, the
complex-valued Jones matrix profile eJmeta ρ;φð Þ is con-
verted into a physically realizable unitary matrix profileeUmeta ρ;φð Þ by leveraging a dual-matrix holography tech-
nique (see Supplementary Section 3 for details). The
unitary matrix profile can finally be implemented by the
metasurface according to the following equation

eUmeta ρ;φð Þ ¼ eR �θ ρ;φð Þð Þ txeiϕx ρ;φð Þ 0

0 tyeiϕy ρ;φð Þ

" #eR θ ρ;φð Þð Þ

ð4Þ
where eR θð Þ is the rotation matrix accounting for the local
orientation θ(ρ,φ) of the nanopillar, and tx, ty, ϕx, and ϕy

define amplitude and phase values of the complex
transmission coefficients for linearly polarized light along
the x and y directions, respectively.
As schematically shown in Fig. 1e, the geometry (Dx, Dy)

and in-plane orientation θ of each nanopillar are inde-
pendently tailored to implement the designed matrix
profile, according to the dual matrix holography. This
design enables subwavelength control over both phase
and polarization at each metasurface pixel. Figure 1f
presents the optical micrograph and scanning electron
microscope (SEM) images of the fabricated metasurface,
revealing the high-fidelity nanopillar array structure. The
fabricated metasurface has a lateral size of 1.2 mm and
supports a designed axial modulation depth of 3 mm.
Detailed fabrication procedures are provided in the
Methods section.

Broadband holography with axial intensity control
We first demonstrate the capability of the metasurface

to modulate the longitudinal intensity profile while pre-
serving a constant polarization state along the propaga-
tion direction. This proof-of-concept experiment validates
longitudinal intensity shaping, a key requirement for
constructing 3D holographic projections. In the setup, the
metasurface is illuminated by a coherent beam derived
from a supercontinuum laser source coupled with an
acousto-optic tunable filter for wavelength selection. A
polarization control device placed before the metasurface
prepares the incident state, while a second device after the
metasurface analyzes the output polarization of the
transmitted beams. The metasurface is mounted on a
motorized translation stage, enabling precise measure-
ments of field distributions at multiple axial positions
along the z-axis.
By independently controlling the longitudinal response

of each beam in the array concerning the axial positions, a
series of transverse intensity patterns is sequentially pro-
jected along the propagation axis within a well-defined 3D
volume. The 5 × 5 Bessel beam array is designed to

successively project the letters “O,” “P,” “T,” “I,” “C,” and
“S” at different axial positions z= 0.25 mm, 0.75 mm,
1.25 mm, 1.75 mm, 2.25 mm. The first row of Fig. 2 pre-
sents the simulated transverse intensity distributions at
the target axial planes. The second to fifth rows present
the experimentally measured intensity profiles under
coherent illumination at wavelengths of 633 nm, 580 nm,
532 nm, and 450 nm, respectively. The brightened beams
exhibit uniform intensity across each transverse plane,
ensuring high-contrast and clearly distinguishable pro-
jections. Minor wavelength-dependent axial shifts,
attributed to chromatic dispersion in the longitudinal
wavevector spectrum, are observed. Nonetheless, the
consistent reproduction of the designed patterns across a
broad spectral range demonstrates the broadband
robustness of the metasurface for 3D image projection.

3D vectorial field reconstruction
To demonstrate 3D vectorial holography with simulta-

neous control of intensity and polarization, we fabricated
two metasurfaces, each with a lateral size of 1.2 mm and
designed for modulation over an axial range of 3 mm. The
experimental configuration is similar to that used in
previous demonstrations, with additional polarization
control elements incorporated. The first metasurface
sequentially projects the letters “N” and “J” within two
distinct axial regions, spanning z= 0.6–1.2 mm and
z= 1.7–2.3 mm, respectively. Within each region, the
beam intensity is shaped to follow a smooth cosine-type
axial envelope. The second metasurface encodes four
letters—“M,” “E,” “T,” and “A”—over z= 0.1-0.6 mm, 0.9-
1.4 mm, 1.6-2.1 mm, and 2.4–2.9 mm, respectively, with
binary-valued axial intensity functions defining the on-off
switching of each symbol. The longitudinal intensity
profile of each beam is independently engineered through
the superposition of constituent Bessel modes, allowing
precise axial positioning of the transverse patterns. In
parallel, the longitudinal polarization states are pro-
grammed to evolve along customized trajectories on the
Poincaré sphere. For these two metasurfaces, the trajec-
tories are constrained to the equatorial plane, rotating in
opposite directions under linearly polarized illumination
—one completing a half counter-clockwise rotation, and
the other a full clockwise rotation—thereby generating
continuously varying longitudinal polarization states.
Figure 3a, b presents simulated and experimentally

measured transverse intensity distributions at the target
axial positions. The experimental results closely repro-
duce the simulated patterns across the axial range. To
analyze intensity evolution in detail, a z-axis scan was
performed, and the beam intensities highlighted by white
circles were recorded. The corresponding envelopes,
plotted beneath Fig. 3a, b, agree well with the designed
profiles. Minor deviations observed in the second
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metasurface arise from the finite number of Bessel com-
ponents (N) used in the superposition, as discussed in
Eq. (3). Additional results, provided in Supplementary
Section 6, further verify independent longitudinal mod-
ulation across the beam array, which is essential for
constructing spatially varying 3D vectorial holograms.
To confirm the evolution of polarization states along

the propagation axis, full Stokes polarimetry is carried out
to calculate the normalized Stokes parameters S₁, S₂, and
S₃. These parameters are derived using six intensity
measurements taken through linear polarizers aligned
along 0°, 90°, 45°, and 135°, and circular polarizers for
right- and left-handed components (see Supplementary
Section 7 for details): S1= (I0°−I90°)/(I0°+ I90°),
S2= (I45°−I135°)/(I45°+ I135°), S3= (IRCP−ILCP)/(IRCP+
ILCP). Figure 3c, d shows the intensity distributions of the

beams in the x-z plane under these six analyzer settings.
Based on these measurements, the normalized Stokes
parameters along the beam center are reconstructed, and
the corresponding polarization state evolution is also
mapped on the Poincaré sphere, as shown in Fig. 3e, f.
These plots clearly visualize the polarization trajectories,
which match the target designs, confirming intended
vectorial modulation along the propagation axis. The
experimental results corroborate the simulated trajec-
tories, demonstrating the platform’s precision and flex-
ibility in simultaneously realizing longitudinally varying
intensity profiles and polarization states.
To highlight more complex polarization modulation, we

further designed a metasurface that introduces chirality
evolution into the longitudinal polarization response.
This metasurface projects the letters “O,” “P,” and “T” at
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z= 0.12–0.68 mm, 1.22–1.78 mm, and 2.32–2.88 mm,
respectively, each defined by binary-valued axial intensity
profiles. The simulated and measured transverse patterns
are shown in Fig. 4a, where the recorded beam intensities
closely follow the target envelopes. Full polarization
analysis is also performed along the propagation axis. The
beam intensities, filtered through different polarization
bases and recorded in the x-z plane, are shown in Fig. 4b.
The corresponding Stokes parameters are calculated and
plotted in Fig. 4c, alongside the polarization trajectories
on the Poincaré sphere. Unlike prior examples, the
polarization states in this metasurface traverse a closed-
looped trajectory connecting the north (0, 0, 1) and south
(0, 0, −1) poles of the Poincaré sphere, indicating full
control over the helicity of the field. These results validate
the versatility of the designed 3D vectorial holographic
projection in engineering complex polarization behavior.
It is worth noting that the longitudinal polarization

response of each beam can be independently customized.
Furthermore, the axial modulation rate can be further
enhanced by incorporating a greater number of Bessel
beam components in the superposition (as governed by
Eq. (3)) and by reducing the structural period of the
metasurface nanostructures (see Supplementary Section 1
for details). These enhancements enable faster polariza-
tion switching and higher axial resolution, offering sub-
stantial potential for advanced applications in vector beam
shaping, volumetric data encoding, and 3D display
technologies.

All-optical information encryption
Since the projected 3D vectorial patterns are fully

determined by the axial intensity and polarization
response functions of the programmable beam array, the
proposed framework naturally supports advanced func-
tionalities such as all-optical encryption and secure
information storage. By increasing the size and complexity
of the beam array, information can be encoded in a high-
capacity, parallel, and secure manner. Figure 5a schema-
tically illustrates a key-based holographic encryption
strategy that leverages the longitudinal intensity and
polarization degrees of freedom of the beam array. In this
scheme, the metasurface is designed to project custo-
mized light-field patterns—directed by ciphertext content

—at predefined axial depths, with each pattern associated
with a distinct polarization state. To further conceal the
encoded information, deceptive patterns are introduced
with orthogonal polarization states or placed at mislead-
ing depths, thereby generating deliberate optical inter-
ference that obscures the true signal. Successful
decryption requires a key specifying both the exact axial
positions and polarization states of the symbols. Without
this key, even direct physical access to the metasurface
does not allow recovery of the ciphertext, ensuring
hardware-level optical security.
As a proof of concept, we designed and fabricated two

metasurfaces, each encoding different ciphertexts within a
10 × 10 beam array. The expanded array size significantly
enhances encryption capacity through increased spatial
and polarization multiplexing. In the first demonstration,
the metasurface sequentially reconstructs the letters “C,”
“E,” “A,” and “S” at the four corners of the array along the
propagation axis, each encoded in a linear polarization
state. In the second demonstration, the metasurface
encodes the digits “1,” “9,” “1,” and “2” at more irregular
positions with varying polarization states. To camouflage
the content, surrounding beams are encoded with
orthogonal polarizations to generate visually noisy pat-
terns, ensuring that the overall transverse intensity dis-
tribution appears irregular and uninformative to direct
observation or conventional imaging. Correct decoding
requires knowledge of both the symbol depths and their
corresponding polarization states.
Figure 5b, c shows the experimentally measured trans-

verse intensity distributions at selected axial positions, with
and without polarization filtering. Without the analyzer, the
projected patterns display uniformly distributed intensity
due to the intentional inclusion of polarization-mismatched
decoy beams. When the correct analyzer is applied at the
target axial planes, the decoy components are suppressed,
and the true polarization channels are selectively trans-
mitted, revealing the hidden symbols with high contrast.
This polarization-gated decoding mechanism substantially
improves encryption fidelity by enforcing physical-layer
security constraints based on polarization and depth
matching. Encryption robustness can be further enhanced
by introducing randomized polarization distributions or
embedding higher-dimensional polarization trajectories.

(see figure on previous page)
Fig. 3 Demonstration of the 3D vectorial holography using a beam array with different longitudinal intensity profiles and rotating linear
polarization state. a, b The simulated and the experimentally measured transverse intensity distributions at designated axial planes generated by (a)
the first and (b) the second metasurface. Scale bars: 100 μm. The target axial intensity response functions (the blue lines), the simulated (the yellow
dashed lines), and the experimentally measured intensity profiles (the red dashed lines) of the beam marked by the white circles are attached below.
The abbreviation “Exp” has the full name of “Experiment”. c, d The experimentally measured intensity distributions around the center beams (as
highlighted in (a, b)) in the x-z plane after transmission through different polarizers, which is depicted by the white arrow. e, f The target (the blue
lines) and experimentally measured (the red dots) normalized Stokes parameters of the beam highlighted in (a, b) as functions of z. The Stokes
trajectory on the Poincaré sphere is plotted based on Stokes vectors (S1, S2, S3)

T, confirming continuous rotation of linear polarization
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Beyond encryption, the scalability of the beam array archi-
tecture makes it suitable for high-throughput optical data
encoding. With continued advances in metasurface nano-
fabrication49–52, this strategy could be extended to larger-
scale implementations, opening promising opportunities for
secure communication, multi-channel optical storage, and
optical steganography.

Discussion
In summary, we propose and experimentally demon-

strate a metasurface platform for 3D vectorial holography,
enabling volumetric light-field reconstruction with
simultaneous control over spatial intensity and

polarization. The target holograms are discretized into
beam arrays, wherein the axial intensity and polarization
profiles of individual beams are independently tailored
through programmable longitudinal response functions.
Experimental validations confirm the platform’s capability
to concurrently sculpt spatial intensity and polarization
distributions, with robust broadband performance and
high fidelity across multiple axial depths and spectral
ranges. Furthermore, by integrating Jones matrix engi-
neering with dual-matrix holography, we realize precise
control over polarization trajectories, including linear,
elliptical, and circular evolutions, within a compact, pas-
sive device.
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T, revealing full helicity modulation, connecting the north
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Beyond conventional holographic reconstruction, we
introduce a 3D vectorial encryption scheme that exploits
polarization- and depth-encoded beam arrays for secure,
key-based optical information encoding and retrieval.
This strategy enables spatially multiplexed data storage
with hardware-level security, where both polarization and
axial information are required for successful decryption.
With advances in nanofabrication, we envision that the
proposed longitudinally customized 3D vectorial holo-
graphic projection will open new avenues for secure
optical communication, high-density data storage, optical
steganography, and quantum information processing.

Methods
Sample fabrication
The metasurface is fabricated using a multi-step pro-

cess involving plasma-enhanced chemical vapor deposi-
tion (PECVD), electron beam lithography (EBL), electron
beam evaporation (EBE), and inductively coupled
plasma reactive ion etching (ICP-RIE). Beginning with a
500-μm-thick double-polished fused silica substrate, a
layer of 400-nm-thick α-Si is deposited onto the sub-
strate using a PECVD system. After oxygen plasma
cleaning, a layer of hexamethyldisilazane is vapor-coated
on the α-Si film to improve adhesion. A layer of 200-nm-
thick positive E-beam resist and a thin layer of E-spacer
are then spin-coated on the sample in turn. Next, the
designed nanopattern is defined in the resist by imple-
menting EBL and development. The 30-nm-thick alu-
minum as a hard mask with the reversed pattern is
obtained via an EBE system combined with a lift-off
process in n-methyl-pyrrolidone. ICP-RIE is used to
pattern into the device layer using an optimized recipe.
The chamber pressure is 10 mTorr, the flow ratio of
C4F8/SF6 is 1.1, and the RF power of the ICP generator
and bias is 2000W and 100W, respectively. Finally, the
metasurface is obtained after removing the residual mask
with the aluminum etchant.
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