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Correlation between the propagation direction of light and spin can be induced via the spin-orbit
interaction and has been proven to be the workhorse in the emerging field of chiral quantum optics and
in the spin-related Hall effects of light. Photonic orbital angular momentum (OAM) provides a high-
dimensional degree of freedom in classical and quantum information processing. However, integrated
OAM-based information technology is an open challenge, because OAM modes are always generated in
pairs with opposite topological charges due to their degeneracy. Here, we observe locking of the OAM
and linear momentum of light by using a chiral optical waveguide with an Archimedean cross section to
induce the orbit-orbit interaction. This OAM-momentum locking enables the deterministic and robust
generation of on-demand OAM vortex light beam in a photonic chip. This new correlation paves the way
toward exotic high-dimensional chiral physical effects and also provides the capability of on-chip

manipulation of light in high-dimensional space.

DOI: 10.1103/tttd-v936

Introduction—The direction of propagation (longitudinal
linear momentum, also namely orbit), spin angular momen-
tum, and orbital angular momentum (OAM) of flying
photons are typically decoupled in a medium. The inter-
action between these momenta is of paramount importance
for manipulating photons and has been intensively studied
for fundamental physics and exotic applications. Strikingly,
the transverse spin of light in a photonic microstructure can
couple to the longitudinal linear momentum [1-5], namely,
the spin-orbit interaction. It can result in the so-called spin-
momentum locking and is one of the cornerstones for
topological photonics [3,6,7]. The spin-momentum locking
has stimulated the birth of the field of chiral quantum optics
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[1,8-11] and, thus, plays the role of workhorse [12—15]. It
is also the key mechanism of numerous spin-related Hall
effects of light [2,3,12,16-18], quantum nonreciprocity
[4,5,19,20], directional emission of photons in diverse
microstructures [10,18,21-24], and the high-dimensional
OAM microlaser [25,26].

Besides the spin angular momentum, a light beam can
also possess two types of angular momenta: the external
OAM arose from the spiral light trajectory, and the intrinsic
OAM caused by the spiral phase exp(iZg), with £ being
topological charge and ¢ the azimuthal phase. Below, we
refer to OAM as the intrinsic OAM. Since the light carrying
OAM was conceptually revealed [27,28], the OAM of
photons provides an ideal carrier for high-dimensional
information technologies [29-35]. On-chip generation of
a pure vortex light beam with a selected OAM is highly
demanded for large-scale OAM-based high-dimensional
information processing [36-42]. Meanwhile, exploration
of the coupling of OAMs and other degrees of freedom
of light can deepen our understanding of the fundamental
nature of photonic OAMs and pave a cornerstone for

© 2025 American Physical Society
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studying high-dimensional light-matter interactions [43].
Despite great success, it is still a challenging task to
selectively generate an OAM vortex light beam with high
fidelity in a photonic chip, because a photonic micro-
structure is degenerate thus far for the OAM modes with
opposite topological charges £¢. Like the directional
emission of a photon enabled by spin-momentum locking,
the on-chip orbit-orbit interaction (OOI) and the resultant
OAM-momentum locking of light in a photonic micro-
structure may open a door for this task but have not been
reported yet. Here, the OOI means the coupling between
the OAM and longitudinal linear momentum of light.

In this Letter, we create the OOI of light and experimen-
tally lift the +¢ degeneracy with a laser-direct-written chiral
photonic circuit. Based on the broken degeneracy, we
experimentally observe OAM-momentum locking and, thus,
the generation of an OAM mode with on-demand topological
charge in a photonic chip. Benefit to OAM-momentum
locking, the generation of vortex light beams is robust against
structure variations. As spin-momentum locking, this OAM-
momentum locking fills a missing part for exploring OAMs
for chiral optics. Even beyond, this mechanism offers
significant advantages in leveraging OAMs for on-chip
high-dimensional information processing [44,45].

Theory of OAM-momentum locking—The concept
underpinning our chiral waveguide for creating the OAM-
momentum locking is schematically explained in Fig. 1.
The waveguides can be fabricated in a photonic chip by the
laser direct writing technique. An optical waveguide with a
Gaussian refractive index distribution in cross section only
supports the propagation of Gaussian modes of light with
zero topological charge, i.e., £ = 0. Two nearby Gaussian
waveguides form a standard direction coupler [Fig. 1(a)].
The Gaussian modes of light can transfer between the
two waveguides without phase mismatching in opposite
directions over a wide wave number range [Fig. 1(d)].
A doughnut-shaped OAM waveguide can guide a pair of
degenerate OAM modes with selected opposite topological
charges -7 in each direction [Fig. 1(b)] [46]. As is shown
in Fig. 1(e), light in a Gaussian waveguide can excite £¢
modes in a doughnut-shaped OAM waveguide; this is
because the phase matching condition is satisfied for both
47 topological charges, i.e., 5ﬂ‘f| = 0. As a benchmark of
this Letter, we theoretically propose a chiral waveguide
with an Archimedean spiral (AS) refractive index profile
for inducing OAM-momentum locking [Fig. 1(c)]. The
helicity of such a waveguide is dependent on the propa-
gation direction of light, breaking the mirror symmetry.
Thus, this waveguide is chiral and lifts the degeneracy
of the propagation constant of the +£¢ modes [Fig. 1(f)],
leading to OAM-momentum locking. Experimentally,
this locking is manifested in the direction coupler by the
observation that a Gaussian mode with k, = kq (k, = —kg)
can excite only the +7 (—£) OAM mode, because 6f, , =0
but 64_, # 0 (6f_, = 0 but 5, , # 0). Below, we denote

(@)
= A

£=0

@ w

FIG. 1. Schematics of three types of directional couplers and
corresponding phase matching conditions. (a) The standard direc-
tion coupler composing of two Gaussian waveguides supporting
Gaussian modes with # = 0. (b) A direction coupler composing of
a Gaussian waveguide and an doughnut-shaped OAM waveguide,
which guides the nonzero ¢ modes with a degenerate propaga-
tion constant. (¢) A direction coupler made from a Gaussian
waveguide and a chiral waveguide with an Archimedean spiral
refractive index profile. The chiral waveguide lifts the degeneracy
of the ¢ modes and exhibits OAM-momentum locking.
(d)—(f) show phase matching of the propagation constant f of
light in two waveguides, corresponding to couplers in (a)—(c). In
(a) and (d), light in the two waveguides is always in phase
matching. In (b) and (e), a pair of selected OAM, , and OAM_,
modes can be simultaneously excited when phase matching is met
at k, = ko or k, = —k,, because they are degenerate in propaga-
tion constant f. (c),(f) The degeneracy of the OAM , , and OAM_,
modes is lifted in the chiral waveguide, ie., 6f,, # 0p_,; the
topological charge and momentum are correlated.

an OAM mode with topological charge Z as OAM, for
simplicity.

The chiral waveguide is experimentally fabricated by the
laser direct writing technique. We show the chiral wave-
guide supporting OAM,; and OAM,, modes in Fig. 2.
Each chiral waveguide composes of 12 subwaveguides
with centers at radial coordinate p,. The centers are
arranged along an Archimedean spiral curve defined as
Po = dj + sgn(kz)bm(p in the polar coordinates (p, ¢, z),
where ¢ € [0, 27), a4 stands for the beginning point of the
spiral curve, b, controls the degree of helicity of the chiral
waveguide, and k, represents the longitudinal momentum
of light along the positive z axis. Specifically, the 12
subwaveguides are arranged with an equal angular interval
from ¢ = 7/6 to 2z. The cross section of each subwave-
guide approximately has a Gaussian-distributed relative
dielectric constant &(r) as follows:

e(r) = 5506—@—/)0)2/5/)2 + g, (1)

where ¢, is the relative dielectric constant of material, dg is
the modification induced by laser writing, and dp describes
the width of Gaussian distribution of the relative dielectric
constant. In the experiment, we have g /e, ~ 1073 — 1074,
Here, £(r) is a constant in the z direction and, thus, can be
replaced with &(p, ¢).
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By setting V(r) = In [¢(r)] as an effective potential and
considering the eigenmode with frequency @, photons
propagating along the chiral waveguide can be described
by the time-independent Schrodinger-like wave equation
with eigenvalue % [47,48]:

(Hy+ H)ly) = Blv).
Holy) = [Vi + K (p. 9)]lw).
H'ly) = V[lw) - V2V (p. )] (2)

with Hamiltonian-like unperturbed operator A, and per-
turbation operator A’, transverse gradient operator Vy, and
Laplacian V2, k*(p, ) = e(p, p)0*/c?, where c is the
speed of light in vacuum, f is the longitudinal propagation
constant, and wave function for the eigenmode |y) =
€Wl (P, )7 in the cylindrical coordinate system
(see Supplemental Material, Sec. II [49]). The dimension-
less scalar function ,,,((p. @) is determined by k*(p. ¢),
and e, is the unit vector of the polarization.

We can assume that the unperturbed Hamiltonian A,
has an eigenvalue 3. The perturbation term A'[y)
includes OOI

Hom = byt ./ po (3)

with strength y, the momentum-orbital operator /i1 = —id_,
and the z-component OAM-orbital operator £, = —id,,. We

have /ily) = Bly) and Z|y) = £|y). This interaction gives
rise to - and k_-dependent correction to the propagation
constant fj,, lifting the +7 degeneracy and leading to
OAM-momentum locking. This OOI is the origin of the
optical Magnus effect [52].

To study the effect of OOI, we replace f with S, =
Po + P, and 5p, being the propagation constant shift
from f,. We introduce the notation ¢} = |¢|sgn(¢ - k.).
Using k, = fy, the first-order correction to propagation
constant is

P, = J’b\f\fk- (4)

The effective propagation constant ., is critically depen-
dent on the topological charge 7, the structure parameter
bz, and the momentum k_ of photons (see Supplemental
Material, Sec. II [49]). Obviously, the propagation-constant
degeneracy breaks for OAM modes with opposite ¢
propagating in the same direction and, therefore, causes
OAM-momentum locking. In the OAM emitter, a single
vortex beam is excited only when the phase matching
condition between the OAM, mode and the Gaussian input
mode is satisfied. It is worthy noting that the phase
matching is met only for paired £ and k,. Thus, the
OAM, and OAM_, modes can be generated only in

t a; = 3um
\ VO by = 0.30 pm/ra

by = 0.38 um/rad

FIG. 2. Experimental chiral OAM emitters. First-order
(I#¢] = 1) and second-order (|¢] = 2) OAM mode emitters con-
sisting of a curved single-mode waveguide and a chiral wave-
guide. A positive (negative) wave vector k, > 0 (k, < 0), marked
as a red (blue) arrow, indicates a Gaussian beam incident to the
left (right) end of the single-mode waveguide. The correspond-
ingly generated OAM mode with positive (negative) topological
charge is marked with a red (blue) spiral wave front. The bottom-
left inset shows the ideal cross section of a chiral waveguide for
|#] = 2. The top-right inset shows the ideal cross section of the
chiral waveguide for |¢| = 1 and the experimental cross-section
image as an example.

opposite directions. This ¢ — k,-paired excitation of
OAM modes definitely reflects OAM-momentum locking
and opens a new door for conducting chiral photonics in
high-dimensional space.

Experimental observation of OAM-momentum locking—
Experimentally, the chiral OAM emitter is schematically
shown in Fig. 2. A Gaussian-mode input waveguide and
an AS waveguide embedded in the photonic chip form an
¢-selective emitter. The insets, respectively, show the ideal
schematic and experimentally measured microscopic
images of spiral cross sections. The black dots along the
spiral curves on the ideal cross section indicate the centers
of the writing laser focus (see Supplemental Material,
Sec. I [49]). The helicity of the OAM waveguide with
fixed parameters aj, and by, can be either counterclock-
wise or clockwise, depending on the observing direction
sgn(k_). By properly choosing parameters a, and by so
that the phase matching condition between the Gaussian
and AS waveguides is satisfied, one can selectively excite
an OAM mode with a specific topological charge 7.

As the theoretical discussion based on Figs. 1 and 2, the
OOI in the AS waveguide breaks the degeneracy of OAM
modes with opposite topological charges and induces
OAM-momentum locking. As a result, when a Gaussian
beam with # =0 is incident on the input waveguide,
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a vortex OAM beam with selective topological charge £,
can be emitted from the output end of the AS waveguide.
The topological charge of the outgoing vortex beam is
determined by structure parameters of the AS waveguide
and the longitudinal momentum of light k,. For a Gaussian
beam input to the left side (k, < 0), the topological charge
of the emitted vortex beam is negative, i.e., £, < 0. When
the input direction reverses (k, > 0), the emitted vortex
beam has 7, > 0, because the helicity of the AS wave-
guide changes from counterclockwise to clockwise. By
adjusting parameters a|,| and b|,|, we can tune the orders of
vortex OAM beams on demand. Taking a; =3 pm and
b; = 0.30 pm/rad, the emitted vortex beam has £, = —1
for k, <0 and £, =1 for k, > 0. As an example,
increasing parameters ajs and b to a; =4 pm and
b, = 0.38 pm/rad, the topological charge becomes
Cou = =2 for k, < 0 and £, = 2 for k, > 0. In principle,
we can fabricate an OAM, waveguide supporting much
higher topological charge and, thus, explore on-chip OAM
emitters with tunability.

Figure 3 provides a proof-of-principle experimental
observation of the theoretically predicted OAM-momentum
locking. Unlike the conventional doughnut-shaped wave-
guide, the OOI in the chiral AS waveguide causes a
nonzero shift 68, with |£| = 1 or 2. The sign of # depends
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FIG. 3. Experimental observation of emitted OAM, modes.
(a),(b) Power spectrum of the emitted first-order (|¢] = 1) and
second-order (|£] =2) OAM modes for right-handed (orange
bars) and left-handed (blue bars) inputs to the Gaussian wave-
guide. The column on the right shows the intensity profiles of the
OAM states corresponding to the power spectrum.

on the propagation direction k, of the input Gaussian mode.
This propagation-constant shift breaks the =7 degeneracy
and leads to OAM-momentum locking. In experiment,
the shifts of; and Of, are positive for an input with
k, = ky > 0, as schematically shown in Fig. 1(f). The
OAM_ | and OAM_, modes, respectively, meet the phase
matching condition with the input Gaussian mode in two
different photonic circuits and, thus, are selectively excited.
For an opposite input k, = —k;, OAM_; and OAM_,
modes are excited.

The aforementioned OAM-momentum locking is clearly
characterized by the selectively generation of OAM modes;
see Fig. 3. To identify the emitted OAM vortex beams,
we use the spatial light modulator to make projection
measurement (See Supplemental Material, Sec. III [49]).
Specifically, we switch the hologram applied to the spatial
light modulator from £, = —3 to £, = +3 for measuring
the power spectra of OAM modes with different Z,. For
k, = ko (k, = —kg), taking the above-mentioned first-order
OAM waveguide as an example, the measured power spectra
verifies that the £y, = +1 (o = —1) mode is mostly
excited with power proportion 89% (76%), corresponding to
the purity; see Fig. 3(a). When we tune the OAM waveguide
parameters, the emitter generates the OAM_, (OAM._,)
mode with purity 87% (87%); see Fig. 3(b).

It is worth noting that the propagation-constant shift
is proportional to the topological charge ¢; see Eq. (4).
Thus, |5f,| is about twice |5f4,|, leading to stronger
OAM-momentum locking for larger |£|. This is proved
by an overall higher purity of the generated OAM,, mode
and the ratio between target modes and unwanted modes
in the OAM,, waveguide, compared with the OAM,,
waveguide.

Robustness against imperfection—The previous OAM
emitters fabricated by femtosecond laser exhibit high
sensitivity to machining parameters. By lifting the degen-
eracy of opposite OAM modes, we significantly improve
the robustness of the on-chip OAM emitter here. To verify
the robustness, we change the coupling length and the
laser writing power and then observe the power spectra
of OAM,, modes. The coupling length L. varies from
3.6 to 4.4 mm with a step of 0.2 mm. We also tune the
writing laser power P, around a usable value P, =
132.5 mW (P, = 141.0 mW), corresponding to the power
for generating the OAM_; (OAM_,) modes; see Figs. 4(a)
and 4(b) [Figs. 4(c) and 4(d)]. The power variation, defined
as AP =P, — Py, ranges from 0 to 2.5 mW with an
interval of about 0.6 mW (the last group is 2.5 mW). Here,
we focus on the power ratio between target mode and
unwanted mode. We measure 25 OAM emitters for each
set of k, and Zy.

Figures 4(a) and 4(b) show the robust generation of the
OAM, _ ., against the variation of the coupling length
and the writing laser power. The purity of target OAM
modes is considerably higher than the unwanted one.
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FIG. 4. Power spectra versus the writing laser power variations
AP around a usable writing laser power P, and the coupling
length L. (a) For k, > 0 and 7, = 1, the average purity is 0.72
and the standard deviation is 0.10. (b) For k, < 0 and £, = —1,
the average purity is 0.73 and the standard deviation is 0.10.
(c) For k, > 0 and ¢, = 2, the average purity is 0.80 and the
standard deviation is 0.06. (d) For k, <0 and 7, = -2, the
average purity is 0.85 and the standard deviation is 0.03. Surfaces
are fitted by experimental power proportion of 25 data points for
£ou = E1 in the first-order OAM waveguide and 7, = £2 in
the second-order OAM waveguide, respectively. Upper surfaces
and corresponding data are for the target OAM, mode. Lower
surfaces are fitting of the unwanted OAM_, mode.

For k, = k( in Fig. 4(a), the average purity for £, = +1 is
about 0.72. Meanwhile, the opposite OAM_; mode is
greatly suppressed, having only an average value of about
0.07. The average extinction ratio is about 10. When the
input light momentum reverses, corresponding to the case
of k, = —ky shown in Fig. 4(b), the OAM_; mode becomes
dominant with an average purity of 0.73. The proportion of
the suppressed OAM | mode reduces to 0.06, yielding an
extinction ratio of 12.8. From a robustness perspective, the
purity of target OAM modes exhibits a standard deviation
of 0.10 for £ = +1 and 0.10 for £ = —1. The overwhelm-
ing generation of the target OAM mode clearly indicates
OAM-momentum locking.

Figures 4(c) and 4(d) show the selective emission of the
OAM;, —» (OAM,, __,) mode for k, = ko (k, = —ko).
Because 0f, ~20f;, in comparison with the OAM,,
waveguide, the target second-order OAM mode has a
higher purity and is more robust against disturbance.
The average power proportions of the target and unwanted
modes of the 25 emitters are 0.80 and 0.04 for k, = k;
(0.85 and 0.04 for k, = —k), respectively. The correspond-
ing extinction ratio increases to 19 (20) in the case of
k, = ko (k, = —k). And the purity of target OAM modes
exhibits a standard deviation of 0.06 for # = +2 and 0.03
for £ = -2.

Discussion and conclusion—In summary, by lifting
the degeneracy of the OAM., modes with the OOI
interaction in an on-chip chiral optical waveguide, we have

theoretically predicted and experimentally observed
OAM-momentum locking. The OAM vortex light beam
can be generated with purity > 0.70 robust against various
fabrication defects. The purity may be further improved by
optimizing the photonic circuits.

This OAM-momentum locking provides a basis for expand-
ing the boundaries of chiroptics [53] and chiral quantum
optics [1] to high dimension on a chip. By combining with
single-photon OAM emitters, the chiral optical waveguide
may enable high-dimensional and topological Hong-Ou-
Mandel interference [54] in a chip. It can also be used for
on-chip generation of entangled OAM vortex beams. Thus, the
demonstrated 7-selected OAM emitter offers a valuable plat-
form and an appealing route for integrated high-dimensional
topological information processing.
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