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Observation of loss-enhanced 
magneto-optical effect
 

Ya-Ping Ruan    1,8, Jiang-Shan Tang    1,8, Zhipeng Li    2,8, Haodong Wu    1, 
Wenpeng Zhou    1, Longqi Xiao    1, Jianfeng Chen2, Shi-Jun Ge    1, Wei Hu    1, 
Han Zhang    3, Cheng-Wei Qiu    2 , Wuming Liu    4 , Hui Jing    5,6 , 
Yan-Qing Lu    1  & Keyu Xia    1,7 

Magneto-optical (MO) effects have a pivotal role in modern photonic 
devices for light manipulation and sensing, but the study of these effects 
has so far been limited to the MO Faraday and Kerr effects. Conventional 
MO systems encounter considerable intrinsic losses, markedly hampering 
their ability to amplify the MO effects. Here we introduce a loss-enhanced 
MO effect to sublinearly amplify the frequency response of a non-Hermitian 
optical cavity under different background magnetic fields. This exceptional 
MO effect relies on an architecture of MO material embedded in a Fabry–
Pérot cavity, accompanied by a polarization-dependent optical absorption, 
that is, linear dichroism, to construct a reconfigurable exceptional point. 
The experimental results show that two eigenmodes of the Fabry–Pérot 
cavity exhibit sublinear frequency splitting. By electrically reconfiguring 
the absorber, the eigenfrequency shift can be adaptively enhanced under 
different background magnetic fields. Using this effect, we demonstrate the 
detection of subtle magnetic field variations in a strong background, with 
the system’s response magnified by a factor exceeding 10 and sensitivity 
increased threefold compared with its conventional Hermitian counterpart. 
Our study leverages exceptional physics to study the MO effect and 
develops a new class of reconfigurable MO devices equipped with enhanced 
sensitivity for potential integration with photonic systems.

Magneto-optical (MO) effects are pivotal in electromagnetism and 
quantum mechanics1, finding widespread applications in photon-
ics for sensing, non-reciprocal devices, spintronics, magnetism of 
two-dimensional materials, quantum computation and the identifica-
tion of fundamental physical effects2–7. So far, they have been mostly 
limited to the conventional MO Faraday and Kerr effects. Both originate 
from the magnetically modified dielectric tensor and are manifested by 
the polarization rotation and ellipticity, as a linear response, of linearly 

polarized light transmitting through or reflected off an MO medium 
under a static magnetic field8. Conventional MO devices rely on strong 
MO materials and physically bulky devices9, hindering their seamless 
integration into photonic systems. Although two-dimensional mate-
rials show strong MO Faraday or Kerr effects5,10, their practical use is 
impeded by the necessity for extremely low temperature and ultrahigh 
magnetic fields. Furthermore, although nanophotonic structures show 
enhanced MO effects at room temperature11,12, the demands of intricate 
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stimulating intensive attention. Through exploring EPs in completely 
passive systems, the detrimental loss has been transformed into an 
advantageous factor for various phenomena37–42, particularly in sens-
ing43. However, it remains unclear whether an EP can amplify a sen-
sor’s sensitivity44–48, mainly because of the equal enhancement of 
gain-induced noise. Nonetheless, constraint to the noise enhancement 
in a passive non-Hermitian system becomes a major subject of fur-
ther study of EP sensors44. EPs in MO systems beyond (quasi-)particle 
contexts21,25–29,35 are also yet to be explored.

Here, we introduce a loss-enhanced MO effect. Differing from the 
linear polarization rotation of light in the MO Faraday and Kerr effects, 
its response near EPs is identified as a sublinear eigenfrequency split-
ting of an optical cavity under various background magnetic fields. To 
demonstrate this exceptional MO effect, we construct a non-Hermitian 
system by inserting an MO material in a Fabry–Pérot (FP) cavity, thus 
breaking the TRS. Note that the magnetically modified dielectric 
tensor causes the non-reciprocal coupling between two orthogonal 
cavity modes. We further break the parity symmetry by introducing 
additional unbalanced polarization-dependent losses—otherwise 
challenging to overcome—to the two orthogonal modes of the FP 
cavity (Fig. 1). An EP emerges when the degree of broken parity sym-
metry matches that of broken TRS, leading to the degeneracy of two 
eigenfrequencies. We then demonstrate that a subtle magnetic field 
variation, superimposed on a relatively strong bias, leads to a sublinear 
eigenfrequency splitting that is enhanced by a factor exceeding 10 
compared with the conventional Hermitian MO configuration49 (Fig. 1). 

precise nanostructuring involve substantial complexity. A more seri-
ous issue in both systems is the intrinsic loss that constrains the MO 
effects and the quality of the system response13, posing a fundamental 
challenge. Efficiently enhancing the MO effects while maintaining 
miniaturization and reconfigurability remains a highly demanded 
but challenging task. The MO effects in a non-Hermitian system have 
been elusive thus far.

Non-Hermitian physics have been widely studied in various bos-
onic and even quantum systems by sophistically engineering the mode 
coupling14–23. By contrast, the MO effects, modifying the off-diagonal 
elements of the dielectric tensor, allow one to electrically tune the 
coupling of two optical cavity modes without interference with the 
mode resonance frequency, offering an important advantage in flex-
ibility and tunability. Moreover, they also spontaneously break the 
time-reversal symmetry (TRS), which gives rise to a great number of 
remarkable fundamental physical phenomena. Thus, the MO system 
can be an ideal platform for the study of non-Hermitian physics24. 
Recently, magnetic-related non-Hermitian systems, such as magnonic 
waveguides and cavities and quantum spins, have been proposed to 
unveil exotic physics21,25–29. Among these phenomena, special singular-
ity points termed exceptional points (EPs) have garnered considerable 
interest due to the simultaneous coalescence of both eigenvalues and 
eigenvectors30.

One main workhorse of studying non-Hermitian physics is the 
potential improvement of the sensor responsivity31–34 and the stabil-
ity35 near EPs. The concept is theoretically proposed by Wiersig36, 
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Fig. 1 | Loss-enhanced MO effect. a, Conceptual illustrations of loss-controlled 
MO effect. A conventional Hermitian system consists of an MO Faraday material 
in an FP cavity, where the losses of two orthogonal modes remain equal. The 
resonant frequencies of the two modes show a linear function with magnetic field 
perturbation. An additional loss is inserted into the cavity to break the parity 
symmetry and create a reconfigurable EP, resulting in an enhanced MO effect due 

to sublinear frequency split induced by the loss. b,c, The real part, Re[ν], of the 
two eigenfrequency surfaces plotted in (Δν0, B) parameter space of the 
conventional (b) and loss-enhanced MO effects (c). d,e, An illustration of 
spectrum features (d) and a comparison of frequency splits and response (e) of 
the conventional and loss-enhanced MO effects.
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In contrast to the gain–loss counterpart, a threefold improvement in 
sensitivity is achieved. As the linear dichroism of the additional optical 
absorber can be electrically controlled, the achieved amplification of 
the MO effect can be reconfigured to adapt to different background 
magnetic fields.

Theory
Figure 1 shows the basic concepts of the conventional Hermitian and 
loss-enhanced MO effects, along with their responses to a magnetic 
perturbation ΔB. Both setups consist of an FP optical cavity and an 
embedded MO material (Fig. 1a). The cavity supports the horizontally 
and vertically polarized (denoted as HP and VP) modes with frequencies 
νH and νV, and decay rates κH and κV, respectively. Due to the magnetiza-
tion of a magnet50, the MO material induces a coupling between the 
HP and VP modes with a strength gB, which is proportional to the ampli-
tude of the applied d.c. magnetic field B. The coefficient g is determined 
by the Verdet constant of the MO material and the geometry (Methods). 
We neglect the small magnetically induced absorption and assume 
that g is a real number because its imaginary part is at least two orders 
of magnitude smaller (Supplementary Section 2). The MO system spon-
taneously breaks the TRS, described by a non-Hermitian Hamiltonian 
(Methods and Extended Data Fig. 1)

H = h [
νH − iκH igB

−igB νV − iκV
] , (1)

where h is the Planck’s constant. This Hamiltonian is derived in a quan-
tum formalism. It provides a transparent picture necessary for under-
standing the mode coupling of a cavity and can reveal rich physics 
beyond the classical picture of circular birefringence. The eigenfre-
quencies can be calculated as

ν± = ν0 − iκ ±√g2B2 + (Δν0 + iΔκ)2, (2)

where ν0 = (νH + νV)/2, Δν0 = (νH − νV)/2, κ = (κV + κH)/2 and Δκ = (κV − κH)/2. 
Δν0 and Δκ are respectively the frequency difference and loss difference 
between the HP and VP modes in the absence of the magnetic field, 
meaning B = 0. The frequency response of the system is measured as the 
eigenfrequency splitting, Δν = ℜ[ν+] − ℜ[ν−]. Here, ℜ[⋅] means the real 
part of a complex number. The capability of sensing a small fluctuation 
ΔB relies on the dynamic response of a sensor operating at a bias B. Here, 
the dynamic response is evaluated as the response slope R = ∂Δν/∂B.

We start from explaining the conventional Hermitian MO effect 
with κH = κV and Δν0 = 0 as schematically illustrated in Fig. 1a. The sys-
tem’s response ν± is always a linear function of B (see the correspond-
ing eigenfrequency surface in Fig. 1b) In the absence of a background 
magnetic field, the spectra of the two modes in the conventional system 
overlap due to their equal resonant frequencies and loss rates (Fig. 1d). 
Upon coupling by a background magnetic field B, the spectra of the 
conventional system split. A small magnetic perturbation further sepa-
rates the two spectra, resulting in linearly shifted resonant frequencies. 
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Fig. 2 | Experimental setup and characterization. a,b, Schematics of 
experimental setups for the conventional Hermitian MO effect (a) and the loss-
enhanced MO effect (b) under a linearly polarized continuous-wave (CW) input. 
c, Transmission spectra of the HP (blue curve) and VP (red curve) modes in  
the conventional setup. The two modes show approximately equal decay rates.  

d, Single-pass transmittance of the LC cell (top) and calculated loss difference  
Δκ (bottom) versus the applied voltage U in free space. Two EPs (EP1 shown  
as red stars and EP2 as green stars) emerge under different magnetic fields.  
e,f, Transmission spectra of the HP and VP modes at EP1 with Δκ = 0.92 MHz (e) 
and EP2 with Δκ = 1.31 MHz (f).
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The eigenfrequency splitting is Δνc = 2gB, yielding a constant dynamic 
response Rc = ∂Δνc/∂B = 2g to the perturbation (Fig. 1e). Considering a 
weak magnetic perturbation ΔB, the MO effect cannot be effectively 
amplified in this conventional configuration.

Now we introduce the loss-enhanced MO effect to address the 
aforementioned challenges. We further break the parity symmetry by 
adding the differential loss between the HP and VP modes with a liquid 
crystal (LC) cell such that Δκ ≠ 0. By stark contrast, the response of 
loss-enhanced MO effect is essentially different from the conventional 
Hermitian counterpart (Fig. 1c). We consider the case of Δν0 = 0. The 
spectrum features of the HP and VP modes under the zero magnetic 
field illustrate the unbalanced losses (Fig. 1d). When the degree of 
broken parity symmetry equals that of broken TRS, that is, BEP = ∣Δκ∣/g, 
an EP emerges where both eigenvalues and eigenvectors simultane-
ously coalesce. The spectra of the two modes in Fig. 1d show a gradually 
overlapped feature, indicating the degenerated real parts and imagi-
nary parts of eigenfrequencies at the EP. When B > BEP, the system is in 
the so-called passive parity–time (PT) symmetric phase without 
 involving gain51. The eigenfrequencies ν± transform into a nonlinear 
function of B (equation (2)). The resultant eigenfrequency splitting  
is ΔνEP = 2√g2B2 − Δκ2 . The dynamic response at B is given by 
REP =

∂ΔνEP
∂B

|B > BEP = 2g2B/√g2B2 − Δκ2  (Fig. 1e). For a small perturba-
tion ΔB around BEP, the dynamic response is amplified by a factor of 

approximate √BEP/2ΔB (BEP = ∣Δκ∣/g) in comparison with the conven-
tional Hermitian case with preserved parity symmetry. Clearly, a larger 
Δκ, corresponding to a stronger BEP, leads to a higher response enhance-
ment near the EP52,53. This enhancement highlights how the 
loss-enhanced MO effect enables highly sensitive measurements of a 
weak magnetic fields against a strong background. After the parity 
symmetry is sufficiently broken B < BEP, the real parts of eigenfrequen-
cies remain unsplit, showing a suppressed frequency response under 
a background magnetic field. It is worth noting that the degree of 
broken parity symmetry can be electrically controlled, thereby allowing 
for reconfiguration of these exceptional performances adaptive to 
different background magnetic fields.

The sensor sensitivity is evaluated as the ratio of measurement 
uncertainty, namely, noise, and the response54, that is, Sc = σc /Rc and 
SEP = σEP/REP, where σc and σEP respectively denote noise in the conven-
tional Hermitian and loss-enhanced MO effects. The enhancement 
factor of sensitivity is then given by GS = Sc /SEP = GR × σc /σEP.

Experiments
The experimental setups for the conventional Hermitian and 
loss-enhanced MO effects are schematically shown in Fig. 2a,b (see 
Supplementary Section 1 and Supplementary Fig. 1 for the setup). In 
both systems, the FP cavity is composed of two highly reflective mirrors 
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with reflectivity of 99%. Each mirror induces an external loss with rate 
κe. A Faraday MO medium, made from (111)-cut cylindrical terbium 
gallium garnet (TGG) crystal, is inserted into the cavity to induce the 
coupling between the HP and VP modes via a background magnetic field 
and the MO effect. The magnetic field is created by electrical current 
I in the coil surrounding the TGG crystal. In the absence of magnetic 
field, the resonant frequencies of HP and VP modes are equal such that 
Δν0 = 0. The coupling strength is an imaginary value given by igB where 
the coefficient g is proportional to the Verdet constant, measured to 
be 78.82 rad T−1 m−1 (Methods and Extended Data Fig. 2). The HP and VP 
modes exhibit the same dissipation rate in the Hermitian system for 
the conventional MO effect (Fig. 2a). By contrast, the loss-enhanced 
MO effect relies on a very large loss difference, which is the key require-
ment for exhibiting the EP but challenging. To tackle this challenge, 
an LC is inserted in the FP cavity to induce a tunable differential loss, 
that is, Δκ ≠ 0, between the HP and VP modes even when B = 0 (Fig. 2b).

To study the loss-enhanced MO effect, we project a continuous- 
wave laser with frequency ν, linearly polarized at 45° with respect 
to the horizontal plane and centred at 795 nm, to the MO cavity and 
observe the total transmission spectra. In this configuration, both 
the HP and VP modes are driven. The output power spectral line-
shape of non-Hermitian systems may exhibit either Lorentzian or 
super-Lorentzian profiles near EP (gΔB ≪ κ)55. When a single cavity 
mode is excited, the total output power spectrum exhibits a squared 
Lorentzian lineshape56. However, in our scenario where two cavity 
modes are simultaneously excited, the transmission spectrum approxi-
mates the superposition of two Lorentzian lineshapes near EP (Sup-
plementary Section 3 and Supplementary Fig. 3)

T ≈ (1 − 2gΔBΔκ
κ2

) [
2κ2e

∆
2
+ + κ2+

+
2κ2e

∆
2− + κ2−

] , (3)

where Δ± = ν − ℜ[ν±] and κ± = −ℑ[ν±]. ℑ[⋅] denotes the imaginary part of a 
complex number. Ideally, κ+ = κ− = κ. This approximation is always met in 
our experiment (B ≤ 7.82 mT). The frequency response can be retrieved 
by fitting the total transmission spectrum with the sum of two Lorentz-
ian lineshapes. By contrast, the eigenspectra of the conventional MO 
sensor are measured by separating the left circular polarization (LCP) 
and right circular polarization (RCP) components, each of which can 
be individually fitted with a Lorentzian lineshape.

We first observe the conventional Hermitian MO effect with the 
preserved parity symmetry. κH and κV are designed to be equal for the 
HP and VP cavity modes at B = 0, but measured to be 3.16 MHz and 
3.07 MHz (Fig. 2c), respectively, due to experimental imperfections. 
The loss difference Δκ = 0.045 MHz is negligible. In the presence of 
an external magnetic field B (Fig. 3a), the two eigenmodes become 
LCP and RCP with eigenfrequencies ν± = ν0 ± gB. The conventional 
MO effect shows a linear frequency response as a function of B, also 
illustrated by the transmission spectra in Fig. 4a. This result indicates a 
weak MO effect under an external magnetic field B < 8 mT. In addition, 
conventional MO configuration lacks the reconfigurability to amplify 
the MO effect.

We now observe the loss-enhanced MO effect by further break-
ing the parity symmetry. We introduce considerably distinct losses 
to the HP and VP modes by using an LC cell with a molecular align-
ment tuned with an electrical voltage U (Fig. 2b and Supplementary  
Section 4). In this case, the two eigenmodes become elliptically polar-
ized and non-orthogonal. Figure 2d shows differential absorption of 
the LC for the HP and VP light, that is, linear dichroism, for a single 
pass. The loss difference Δκ is comparable to the decay rates of the 
cavity modes. In our two trials, Δκ is set to be 0.92 MHz and 1.31 MHz 
(Fig. 2e,f), corresponding to EP1 and EP2 shown in Fig. 2d.

The loss-enhanced MO effect is shown in Fig. 3. When the degree 
of broken TRS is smaller than that of broken parity symmetry, the fre-
quency split is completely switched off even though the external mag-
netic field (0 < B < BEP) is present. At EP1 (BEP = 2.26 mT, U = 1.924 V), the 
loss-enhanced MO effect is ultrasensitive to subtle magnetic field vari-
ations on the base of a strong background, indicated by the square-root 
response shown by the red dots and corresponding curve in Fig. 3a. 
Compared with the conventional MO effect, the dynamic response is 
enhanced by a factor of 11 (Fig. 3b). For Δκ = 1.31 MHz, the EP shifts to 
BEP = 3.24 mT (EP2) (Fig. 3a). The response enhancement increases to a 
factor of 14 around EP2, in agreement with the theory52,53. This response 
enhancement was considered as the sensitivity improvement of a 
gain–loss non-Hermitian sensor in previous works32,33.

The system noise is characterized in Fig. 3c. There are two 
uncorrelated noise contributions: the I-related noise and the back-
ground noise. In our experiment, the overall noise is well fitted by 

σc = √σ20,c + (γcI )
2  for the conventional Hermitian MO effect and 
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σEP = √σ20,EP + (GRγEPI )
2  for the loss-enhanced MO effect. The fitting 

parameters are γc = 1.547 × 10−4 MHz mA−1, σ0,c = 0.0029MHz, 
γEP1 = 9.67 × 10−5 MHz mA−1, σ0,EP1 = 0.019 MHz and γEP2 = 4.65 × 10−5  
MHz mA−1, σ0,EP2 = 0.021 MHz for the conventional, EP1 and EP2 sen-
sors, respectively. Enhancement of the response suppresses only the 
background noise but not the signal-related noise, which is interpreted 
as the effect of the Petermann factor44.

The sensitivity enhancement is then evaluated on the basis of the 
noise and the dynamic response as GS = GR

σc

σEP
. This simple model is in 

good agreement with experimental results (Fig. 3d). Note that the 
dynamic response Rc of the Hermitian system is constant across various 
magnetic fields. Therefore, it is reasonable to compare the perfor-
mance of two systems around EP. In our experiments, the EP1 sensor 
obtains twofold enhancement in sensitivity (Fig. 3d). Our experimental 
results clearly confirm that the sensitivity at a lossy EP can be enhanced, 
in sharp contrast to the conclusion in refs. 44–46 that the EP sensors 
cannot perform exceptional sensitivity. In real measurement, the signal 
is fed into the system externally and the I-related noise is avoided. The 
sensitivity of the conventional MO effect at the diabolic point is then 
given by σ0,c/Rc. Considering this practical case, we evaluate the 

sensitivity improvement as G′
S = GR

σ0,c

σ0,EP
 and obtain G′

S = 1.7 for the EP1 

and G′
S = 2.0  for the EP2. Our non-Hermitian sensor still shows 

enhancement in sensitivity because its improved response suppresses 
the inevitable background noise. In principle, the measurement uncer-
tainty is limited by the spectral fitting uncertainty, which is determined 
by the background noise and given by κ/M with M ≈ 200. Thus, the 
attainable sensitivity is κtot√g2B2 − Δκ2/2Mg2B within a fixed meas-
urement time, where κtot is the total loss of the cavity. Near EP, the 

sensitivity is approximated as κtot
gM √

ΔB
2BEP

. The sensitivity can be 

improved if the Ce-doped yttrium iron garnets (Ce:YIG) with 
Cv ≈ −105 rad T m−1 (ref. 9) at 1,550 nm and a cavity with a higher quality 
factor are applied (Supplementary Section 5).

The loss-enhanced MO effect can be reconfigured to adapt to 
different background magnetic fields by suppressing the frequency 
split in the broken PT symmetric phase and amplifying the response 
to a small fluctuation in the passive PT symmetric phase. This unique 
property is confirmed by the output spectra shown in Fig. 4. In the 
conventional MO system, the frequency splitting is a linear function 
of the magnetic field B (Fig. 4a). Taking a new background magnetic 
field B = 3.24 mT, for example, of the reconfigurable loss-enhanced MO 
effect (Fig. 4b), we tune the voltage U of the LC to be 1.968 V to reach 
EP2. The exceptional performances, including a 14-fold enhanced fre-
quency shift at EP2 and the suppressed frequency split before EP2, are 
preserved as shown in Fig. 3. The suppressed and enhanced frequency 
splits are also confirmed by the transmission spectra at magnetic fields 
of 2.19 mT and 4.38 mT in Fig. 4b, respectively. Note that, if the TRS 
is sufficiently broken, the response of the loss-enhanced MO effect 
approaches that of the conventional counterpart, as shown by an 
example at 7.82 mT in Fig. 4.

Conclusions and outlook
We have demonstrated a loss-controlled MO effect with an enhanced 
dynamic frequency response and electrical reconfigurability to vary-
ing background magnetic fields. An additional loss counterintuitively 
enhances the sensitivity by threefold near EP of a non-Hermitian sys-
tem. Conclusive evidence has been clearly observed to confirm the 
advantage of an EP sensor in measurements, a field stimulating vast 
debates since the pioneering theoretical prediction36. This work opens 
the door to using the interplay between the exceptional MO effect 
and non-Hermitian physics for making sensors with high sensitivity.

By tuning the EP to screen the unwanted strong background, the 
sensor can sensitively detect minute fluctuations without requiring 
magnetic shielding. This scheme is particularly advantageous when 

magnetic shielding is either inaccessible or costly, such as in mineral 
exploration or magnetic resonance imaging. The loss-enhanced sensor 
can also potentially be integrated into an LC microcavity embedded 
with an iron garnet film such as Ce:YIG57. Due to the ultrahigh Verdet 
constant of Ce:YIG9, the sensitivity can potentially be improved by 
three orders of magnitude.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-024-01592-y.

References
1. Kimel, A. et al. The 2022 magneto-optics roadmap. J. Phys. D 55, 

463003 (2022).
2. Luo, J. et al. Large effective magnetic fields from chiral phonons in 

rare-earth halides. Science 382, 698–702 (2023).
3. Yavorsky, M. A. et al. Topological Faraday effect for optical 

vortices in magnetic films. Phys. Rev. Lett. 130, 166901 (2023).
4. Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, 

R. K. Magneto-optical detection of the orbital Hall effect in 
chromium. Phys. Rev. Lett. 131, 156702 (2023).

5. Dirnberger, F. et al. Magneto-optics in a van der Waals magnet 
tuned by self-hybridized polaritons. Nature 620, 533–537 (2023).

6. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two- 
dimensional van der Waals materials. Nature 563, 47–52 (2018).

7. Choi, Y.-G. et al. Observation of the orbital hall effect in a light 
metal Ti. Nature 619, 52–56 (2023).

8. Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and 
Magnetooptical Materials (Taylor & Francis, 1997)

9. Yan, W. et al. Waveguide-integrated high-performance 
magneto-optical isolators and circulators on silicon nitride 
platforms. Optica 7, 1555–1562 (2020).

10. Crassee, I. et al. Giant Faraday rotation in single- and multilayer 
graphene. Nat. Phys. 7, 48–51 (2011).

11. Chin, J. Y. et al. Nonreciprocal plasmonics enables giant enhancement 
of thin-film Faraday rotation. Nat. Commun. 4, 1599 (2013).

12. Ignatyeva, D. O. et al. All-dielectric magnetic metasurface for 
advanced light control in dual polarizations combined with 
high-Q resonances. Nat. Commun. 11, 5487 (2020).

13. Rizal, C., Shimizu, H. & Mejía-Salazar, J. R. Magneto-optics effects: 
new trends and future prospects for technological developments. 
Magnetochemistry 8, 94 (2022).

14. Rüter, C. E. et al. Observation of parity–time symmetry in optics. 
Nat. Phys. 6, 192–195 (2010).

15. Peng, B. et al. Parity–time-symmetric whispering-gallery 
microcavities. Nat. Phys. 10, 394–398 (2014).

16. Chang, L. et al. Parity–time symmetry and variable optical 
isolation in active-passive-coupled microresonators. Nat. Photon. 
8, 524–529 (2014).

17. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy 
transfer in an optomechanical system with exceptional points. 
Nature 537, 80–83 (2016).

18. Chen, H.-Z. et al. Revealing the missing dimension at an 
exceptional point. Nat. Phys. 16, 571–578 (2020).

19. Peng, P. et al. Anti-parity–time symmetry with flying atoms.  
Nat. Phys. 12, 1139–1145 (2016).

20. Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 
364, 170–173 (2019).

21. Wu, Y. et al. Observation of parity–time symmetry breaking in a 
single-spin system. Science 364, 878–880 (2019).

22. Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in 
quantum dynamics. Nat. Phys. 16, 761–766 (2020).

http://www.nature.com/naturephotonics
https://doi.org/10.1038/s41566-024-01592-y


Nature Photonics | Volume 19 | January 2025 | 109–115 115

Article https://doi.org/10.1038/s41566-024-01592-y

23. Wang, Y.-T. et al. Experimental investigation of state 
distinguishability in parity–time symmetric quantum dynamics. 
Phys. Rev. Lett. 124, 230402 (2020).

24. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry.  
Nat. Phys. 14, 11–19 (2018).

25. Wang, X.-G., Guo, G.-H. & Berakdar, J. Steering magnonic 
dynamics and permeability at exceptional points in a parity–time 
symmetric waveguide. Nat. Commun. 11, 5663 (2020).

26. Yang, Y. et al. Unconventional singularity in anti-parity–time 
symmetric cavity magnonics. Phys. Rev. Lett. 125, 147202 (2020).

27. Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation 
of the exceptional point in cavity magnon-polaritons. Nat. 
Commun. 8, 1368 (2017).

28. Liu, H. et al. Observation of exceptional points in magnonic 
parity–time symmetry devices. Sci. Adv. 5, 9144 (2019).

29. Liang, C., Tang, Y., Xu, A.-N. & Liu, Y.-C. Observation of exceptional 
points in thermal atomic ensembles. Phys. Rev. Lett. 130, 263601 
(2023).

30. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. 
Science 363, 7709 (2019).

31. Chen, W., Özdemir, Ş. K., Zhao, G., Wiersig, J. & Yang, L. 
Exceptional points enhance sensing in an optical microcavity. 
Nature 548, 192–196 (2017).

32. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional 
points. Nature 548, 187–191 (2017).

33. Hokmabadi, M. P., Schumer, A., Christodoulides, D. N. & 
Khajavikhan, M. Non-Hermitian ring laser gyroscopes with 
enhanced Sagnac sensitivity. Nature 576, 70–74 (2019).

34. Lai, Y.-H., Lu, Y.-K., Suh, M.-G., Yuan, Z. & Vahala, K. Observation 
of the exceptional-point-enhanced Sagnac effect. Nature 576, 
65–69 (2019).

35. Zhang, X., Hu, J. & Zhao, N. Stable atomic magnetometer in 
parity–time symmetry broken phase. Phys. Rev. Lett. 130, 023201 
(2023).

36. Wiersig, J. Enhancing the sensitivity of frequency and energy 
splitting detection by using exceptional points: Application to 
microcavity sensors for single-particle detection. Phys. Rev. Lett. 
112, 203901 (2014).

37. Peng, B. et al. Loss-induced suppression and revival of lasing. 
Science 346, 328–332 (2014).

38. Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. 
Photon. 10, 796–801 (2016).

39. Huang, X., Lu, C., Liang, C., Tao, H. & Liu, Y.-C. Loss-induced 
nonreciprocity. Light Sci. Appl. 10, 30 (2021).

40. Dong, S. et al. Loss-assisted metasurface at an exceptional point. 
ACS Photon. 7, 3321–3327 (2020).

41. Feng, L. et al. Experimental demonstration of a unidirectional 
reflectionless parity–time metamaterial at optical frequencies. 
Nat. Mater. 12, 108–113 (2013).

42. Li, Z. et al. Synergetic positivity of loss and noise in nonlinear 
non-hermitian resonators. Sci. Adv. 9, 0562 (2023).

43. Park, J.-H. et al. Symmetry-breaking-induced plasmonic 
exceptional points and nanoscale sensing. Nat. Phys. 16,  
462–468 (2020).

44. Wang, H., Lai, Y.-H., Yuan, Z., Suh, M.-G. & Vahala, K. 
Petermann-factor sensitivity limit near an exceptional point in a 
Brillouin ring laser gyroscope. Nat. Commun. 11, 1610 (2020).

45. Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal 
approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 
4320 (2018).

46. Kononchuk, R., Cai, J., Ellis, F., Thevamaran, R. & Kottos, T. 
Exceptional-point-based accelerometers with enhanced 
signal-to-noise ratio. Nature 607, 697–702 (2022).

47. Ding, W., Wang, X. & Chen, S. Fundamental sensitivity limits for 
Non-Hermitian quantum sensors. Phys. Rev. Lett. 131, 160801 (2023).

48. Zhang, M. et al. Quantum noise theory of exceptional point 
amplifying sensors. Phys. Rev. Lett. 123, 180501 (2019).

49. Jacob, D., Vallet, M., Bretenaker, F., Le Floch, A. & Le Naour, R. 
Small Faraday rotation measurement with a Fabry–Pérot cavity. 
Appl. Phys. Lett. 66, 3546–3548 (1995).

50. Zak, J., Moog, E. R., Liu, C. & Bader, S. D. Magneto-optics of 
multilayers with arbitrary magnetization directions. Phys. Rev. B 
43, 6423–6429 (1991).

51. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry 
and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

52. Wiersig, J. Response strengths of open systems at exceptional 
points. Phys. Rev. Res. 4, 023121 (2022).

53. Wiersig, J. Distance between exceptional points and diabolic 
points and its implication for the response strength of 
non-hermitian systems. Phys. Rev. Res. 4, 033179 (2022).

54. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing.  
Rev. Mod. Phys. 89, 035002 (2017).

55. Hashemi, A., Busch, K., Christodoulides, D. N., Özdemir, Ş. K. 
& El-Ganainy, R. Linear response theory of open systems with 
exceptional points. Nat. Commun. 13, 3281 (2022).

56. Takata, K. et al. Observing exceptional point degeneracy 
of radiation with electrically pumped photonic crystal 
coupled-nanocavity lasers. Optica 8, 184–192 (2021).

57. Liang, J. et al. Polariton spin hall effect in a Rashba–Dresselhaus 
regime at room temperature. Nat. Photon. 18, 357–362 (2024).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2024

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-024-01592-y

Methods
Derivation of the MO-induced coupling Hamiltonian
Here, we present a detailed derivation for the interaction Hamiltonian 
describing the MO-induced coupling between the HP and VP cavity 
modes. We first derive the relation between the MO constant and the 
Verdet constant. The magnetization M of a magnetic medium under an 
external magnetic field B, characterized by its general direction, can 
be defined in the (x, y, z)-coordinate system (Extended Data Fig. 1). We 
denote the amplitudes of the magnetization and the magnetic field 
with M and B, respectively. Using the polar angles φ and γ, the three 
orthogonal components of the magnetization are respectively

Mx = M sinφ cos γ,

My = M sinφ sin γ,

Mz = M cosφ.

(4)

It is worth noting that the off-diagonal elements of the dielectric tensor 
are connected to the magnetization M. The MO effect originates from 
the off-diagonal terms. These terms have to obey the Onsager recip-
rocal relation under time reversal (reversing B)8. Thus, the dielectric 
tensor of the MO medium is expressed as50

̄ε̄ = ε0εs
⎡
⎢
⎢
⎢
⎣

1 iQ cosφ −iQ sinφ sin γ

−iQ cosφ 1 iQ sinφ cos γ

iQ sinφ sin γ −iQ sinφ cos γ 1

⎤
⎥
⎥
⎥
⎦

, (5)

where Q is the MO constant proportional to M and, thus, to magnetic 
field B, ε0 is the vacuum permittivity and εs the relative dielectric con-
stant of the medium in the absence of the external magnetic field, that 
is, the zero-field case. Hence, the components of the electric displace-
ment vector D, given by D = ̄ε̄E, where E represents the electric field of 
light. Generally, the MO constant is complex, Q = QR + iQI, where the 
real part QR and the imaginary part QI describe the magnetically induced 
circular birefringence and absorption, manifested by the polarization 
rotation and ellipticity of light in transmission and reflection in the 
conventional MO Faraday and Kerr effects. This electric constitu-
tive relation can be rewritten in the general vector form as 
D = ε0εsE + iε0εs

Q

B
E × B (ref. 8). This form allows one to study the more 

complicated MO effects and is of importance for deriving the coupling 
Hamiltonian.

We consider that light with wavelength λ propagates along the z 
axis in an MO medium. The HP (VP) component of the electric field of 
light, denoted as EH (EV), is along the x (y) axis. The corresponding unit 
polarization vectors are denoted as eH and eV such that EH = EHeH and 
EV = EVeV. The corresponding propagation constant of light is 2π/λ. 
When an external magnetic field is applied to the MO medium in z 
direction, we obtain φ = 0 and γ = 0. The dielectric tensor reduces to

̄ε̄ = ε0εs
⎡
⎢
⎢
⎢
⎣

1 iQ 0

−iQ 1 0

0 0 1

⎤
⎥
⎥
⎥
⎦

. (6)

Then, we have
DH = (ε0εsEH + iε0εsQEV) eH,

DV = (ε0εsEV − iε0εsQEH) eV,
(7)

for the HP and VP components of the dielectric displacement vector 
in the medium, respectively. Importantly, the MO effect couples two 
cavity modes orthogonal in polarization. Using the relations D+ = DH+iDV

√2
 

and D− = DH−iDV

√2
 to transfer the basis from the HP and VP to the RCP and 

the LCP, we can derive

D+ = ε0εs(1 +Q) EH+iEV
√2

,

D− = ε0εs(1 −Q) EH−iEV
√2

.
(8)

Therefore, the MO medium exhibits the complex refractive indices 
n2
± = εs(1 ±Q)  for the RCP and LCP fields. Here, ∣Q∣ ≪ 1. We consider a 

complex value εs = ε′s + iε′′s  and ε′s, ε′′s > 0, where its real part ε′s and imagi-
nary part ε′′s  reflect the refractive index and the absorption of the MO 
material. The refractive index of the host crystal is n′s = √ε′s . The 
zero-field absorption of the MO medium is characterized by 
n′′s ≈ ε′′s /2√ε′s. For the transparent TGG crystal, we have n′′s /n′s ≈ 1.63 × 10−8 
and ε′′s /ε′s = 2n′′s /n′s ≈ 3.3 × 10−8  (Supplementary Section 2). Thus, we 
have n± ≈ n′s(1 ±QR/2) + i(n′′s ± n′sQI/2) (ref. 8). Typically, QR overwhelms 
QI by orders in amplitude. For example, QR ≈ 61QI even for the absorp-
tive ferromagnetic material Fe (ref. 50). This ratio QR/QI is independent 
of the magnetic field B and at the level of 103 for the TGG crystal at λ 
≈ 795 nm (Supplementary Section 2).

Next, we connect the MO constant Q with the complex Verdet 
constant via the MO Faraday effect and derive the magnetically induced 
coupling Hamiltonian in the quantum formalism. We consider an 
LMO-long MO medium with the Verdet constant CV. The differential 
refractive indices causes a complex polarization rotation of θ = θR + iθI 
after a linearly polarized light beam passes through the medium. The 
real part of θ is the Faraday rotation. The imaginary part reflects the 
ellipticity of the transmitted light. The real and imaginary parts are 
respectively related to the MO constant via θR =

2π
λ
n′sLMOQR  and 

θI =
2π
λ
n′sLMOQI . According to the MO Faraday effect, we also have 

θR = CVBLMO. Thus, we find the relation QR = CVB/ks, where ks is the wave 
number of light in the MO medium and ks = 2πn′s/λ. When QI ≪ QR, we 
can neglect the contribution of ε′′s  and QI. The constitutive relation 
reduces to D = ε0εsE + iε0εs

CV

ks
E × B.

For an Lc-long FP cavity embedded with an LMO-long MO medium, 
the Hamiltonian describing the system energy is given by

Hs = ∫
V

D∗(r) ⋅ E(r)dV. (9)

Here, we use the complex magnitude for the displacement and the 
electric field, for simplicity. We neglect the contribution from the 
energy of the magnetic field of light because it shifts the system energy 
only by a constant value in this MO model. In the case of B = 0, we can 
decompose the free Hamiltonian into two contributions from the bare 
FP cavity and the MO medium as

H0 = ∫
Vc

D∗(r) ⋅ E(r)dv +∫
VMO

εs − 1
εs

D∗(r) ⋅ E(r)dv, (10)

where Vc and VMO are the volumes of light field in the bare FP cavity and 
the MO medium, respectively. Equation (10) is the free Hamiltonian in 
the HP and VP basis. The HP and VP eigenmodes are decoupled in the 
absence of the magnetic field B. They are degenerate in frequency such 
that νH = νV = ν0. We use notations aH and aV for denoting the annihilation 
operators of the quantized HP and VP eigenmodes. We assume that the 
mode effective volume is Vm and the amplitude of the quantum vacuum 
field is E0 such that the system energy is hν0 = ε0VmE

2
0/2. The ratio of 

the optical volume of light in the MO medium and the cavity volume is 
given by η = VMO/Vc = LMO/Lc. At B = 0, this free Hamiltonian in operators 
takes the form

H0 = hν0 (a†HaH + a†
V
aV) . (11)

In the presence of the magnetic field B, the HP and VP modes are cou-
pled via the MO effect. The interaction Hamiltonian is given by

HI = iε0(εs − 1)Q∫
VMO

(E∗VEH − E∗HEV)dV. (12)

In the presentation of the quantized HP and VP cavity modes, the Ham-
iltonian in quantum optics becomes

HI = iε0(εs − 1)QVMOE
2
0 (a

†
VaH − a†HaV)

= ihν0(εs − 1)Qη (a†VaH − a†HaV) .
(13)
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We rewrite the interaction Hamiltonian in the standard form as

HI = ihgB (a†VaH − a†HaV) , (14)

with the complex coefficient g = gR + igI and gR = (ε′s − 1)ηCVν0/ks  for  
the real part of the MO-induced interaction. Interestingly, the MO  
effect can also induce an anti-Hermtian interaction with strength 
gIB = ε′′s ηQR + (ε′s − 1)ηQI ≈ (ε′s − 1)ηQI  due to ε′′s ≪ ε′s, apart from a Her-
mitian interaction. Essentially different from the chiral optical cavity 
embedded with a natural optical active medium, the magnetic field 
simultaneously breaks the TRS. As a result, the MO effect accumulates 
a non-zero interaction between the HP and VP modes. The general full 
Hamiltonian for the system is

H = h (νHa†HaH + νVa
†
VaV) + ihgRB (a†VaH − a†HaV) − hgIB (a†VaH − a†HaV) .

(15)

The second part describes the MO-induced Hermitian Hamiltonian, 
which means that there is a non-reciprocal coupling between the two 
cavity modes because the two off-diagonal elements are unequal. 
The third part represents the anti-Hermitian interaction dominantly 
originating from the MO-induced absorption8,58. The latter is normally 
negligibly small with respect to the former. Phenomenally taking into 
account the cavity decay with rates κH and κV for the HP and VP modes, 
respectively, and neglecting the anti-Hermitian interaction, we obtain

H = h [
νH − iκH igB

−igB νV − iκV
] . (16)

For the TGG crystal, g is real (Supplementary Section 2), to a good 
approximation. This quantum Hamiltonian provides a formalism 
beyond the classical picture of polarization rotation and ellipticity 
of light and reveals richer physics underlying the MO effect. In par-
ticular, it provides a convenient model and a transparent picture for 
understanding the mode coupling in an optical cavity and the related 
non-Hermitian physics.

It is interesting to address the symmetry of the Hamiltonian with 
νH = νV and non-zero real gB. We define the rotation operator as

Rθ = [
eiθ 0

0 e−iθ
] , (17)

with R−1
θ
= R−θ, and the standard parity operator as

𝒫𝒫 = [
0 1

1 0
] . (18)

We can define a rotation–parity operator Rθ𝒫𝒫 as

𝒫𝒫θ = [
0 eiθ

e−iθ 0
] . (19)

We dub it the generalized parity operator. The time reversal 𝒯𝒯  changes 
i to −i. If κH and κV are positive, we can apply a gauge transformation to 
the eigenmodes. For a Hermitian system with κH = κV, the Hermitian H 
obeys the rotation–parity symmetry under operation 𝒫𝒫π/2H𝒫𝒫−1

π/2 = H   
but 𝒫𝒫H𝒫𝒫−1 ≠ H . For simplicity, we refer to the parity symmetry in the 
main text as the generalized parity symmetry. Under the gauge  
transformation, the non-Hermitian system with κH ≠ κV obeys 
(𝒫𝒫𝒯𝒯)H(𝒫𝒫𝒯𝒯)−1 = H, implying the passive 𝒫𝒫𝒯𝒯  symmetry without involving 
the gain.

Measurement of Verdet constant of the TGG crystal
Due to the difference in refractive index between RCP and LCP in a TGG 
crystal, a linearly polarized laser beam experiences rotation after 

passing through the TGG crystal. The rotation angle α = CVBLmo, where 
CV is the Verdet constant and Lmo represents the length of the TGG 
crystal. In an optical cavity, we can derive that α = π

2
Δν
FSR

. During meas-
urement, we use a small magnetic loop to generate the magnetic field, 
instead of the current coil. We fix the magnitude of magnetic field at 
194 mT and scan the laser wavelength. The Verdet constant of the TGG 
crystal has been measured from 765 nm to 804 nm, as shown in 
Extended Data Fig. 2. We fitted the experimental data with the formula 
given by59

CV =
Cf

λ2 − λ2f
, (20)

where the fitting parameters are Cf = 4.45149 × 107 rad nm2 T−1 m−1  
and λf = 257.5 nm. The Verdet constant (CV) is measured to be 
78.82 rad T−1 m−1 (λ = 795 nm).

Data availability
The data that support the plots within this paper are available via 
figshare at https://doi.org/10.6084/m9.figshare.25998517(ref. 60). 
All other data used in this study are available from the corresponding 
authors upon reasonable request.
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Extended Data Fig. 1 | Spherical coordinate system for the magnetization M in the (x, y, z)-coordinate. The angle φ represents the orientation of M with respect to 
the z axis, and γ is the angle between M projected on the x-y plane and the x axis50.
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Extended Data Fig. 2 | Verdet constant of the TGG crystal. Black dots represent the experimental results and red curve represents the fitting from ref. 59.
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