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Abstract
Thouless pumping is the adiabatic transportation of quantized charge, which is regarded as the
dynamic version of the quantum Hall effect. Here we propose the design of an acoustic system to
demonstrate the topological pumping characterized by transporting acoustic energy from one side
to the opposite. The system is composed of coupled acoustic waveguide arrays with modulated
coupling along both cross-sections and the propagating direction. We explore multiple topological
phases by introducing rich spatial frequency or enlarged range of the hopping modulation. Such
distinct topological phases are evidenced by adiabatic evolution of the edge states, where the
acoustic system varies continuously and slowly along the state propagating direction. The
robustness behavior of the edge states transport is also verified with numerical simulations to
imply their topology origin. Our work provides a route to realize topological phases and utilize the
corresponding edge states in waveguide arrays that can lead to versatile acoustic wave
manipulation applications.

1. Introduction

Topology provides additional insights and freedom to understand the phase of matter, which paves new
ways to manipulate electrons [1, 2], photons [3, 4] and phonons [5, 6]. A notable topology phase is the
Chern insulator that breaks time-reversal symmetry and has one-way propagating states along the edges.
Electromagnetic-wave systems are a great platform for realizing Chern insulators [7–9]. In contrast,
however, magneto-acoustic effects are usually too weak to realize nonreciprocal acoustic wave propagation
with a magnetic field. To overcome this obstacle, it is theoretically proposed that biased angular momentum
by allowing a moving medium can break the time-reversal symmetry for sound and enables acoustic Chern
insulators [10–13], which have been experimentally demonstrated [14]. However, it is quite challenging to
control the airflow in complicated systems and the active components, such as rotating motors. Such
strategies are also energy-consuming.

Another prominent manifestation of band topology is through the Thouless pumping, which originally
refers to the quantized charge transportation in electrons systems with adiabatic and cyclic parameter
variation [15, 16]. In classical-wave systems, Thouless pumping is about the adiabatic evolution and
transportation of the edge states and can be used to characterize the topological invariants [17–21]. In
acoustics, however, dissipations and active modulations have been the obstacles preventing the realization of
pumping in time domain. Recently, a successful temporal acoustic pumping of topological modes was
reported using a bilayer aperiodic acoustic lattice [22]. On the other hand, the time-dependent Schrödinger
equation and the paraxial wave equation share a similar mathematical form. This fact has been leveraged for
the realization of Thouless pumping by mapping the temporal evolution to the spatial dimension along the
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propagative direction [18, 19, 23–31]. Very recently, both onsite [23] and hopping [31] modulation
strategies have been developed in acoustic waveguide systems to explore the propagating effects of
topological edge states. However, how to fully design different hopping effects to realize distinct topological
phases is still an open question.

Here, we use an acoustic waveguide array as a platform to explore the topological phases and implement
topological pumping in real spaces by introducing parameter evolution along the propagating direction.
The coupling can be modulated freely without affecting the onsite potential, so the cross-sections of the
waveguide array reproduce commensurate hopping modulating Harper models. Harnessing the dipole-like
mode profile of the first-order guiding mode, we design both positive and negative coupling effects
simultaneously and realize a novel trimeric Harper model, where the gap Chern numbers are ±2. The
energy spectra and mode distributions are thoroughly investigated with the finite element methods (FEM)
and the tight-binding models (TBMs). We enforce adiabatic variations along the propagating direction by
changing the positions of the coupling channels and numerically realize topological pumping that acoustic
energy transfers from one side to the opposite of the array. Our system shows excellent robustness, which is
of great importance for topological phase design and wave manipulation.

2. Models and results

2.1. Positive and negative hopping coefficients
The schematic of the proposed acoustic waveguide array with coupling modulated along the propagating
direction is shown in figure 1(a). The waveguides have geometric parameters h = 20 mm and w = 4 mm,
and they are connected by two narrow channels with thickness hc = 2 mm. The total length of the short
(long) channels is ln = 10 mm (lp = 30 mm), which is optimized to provide negative (positive) hopping
[32]. All the waveguides and coupling components are filled with air with density ρ = 1.21 kg m−3 and
sound speed c = 340 m s−1. For one single waveguide, its first-order guiding mode has a cut-off of
f0 = 8550 Hz. This mode has a dipole-like cross-sectional profile with one nodal plane at the center and two
anti-nodes with opposite phases at the two ends. The coupling strength is therefore tunable by changing un

and up, which are the positions of the coupling channels. Using the FEM software COMSOL Multiphysics,
we first study the case of a two-cavity coupling system with a short channel and get the eigenfrequencies as
a function of un, as marked by the black dots in figure 1(b). When the short channel moves towards the end
of the cavity, the two eigenfrequencies split almost linearly around f0, which means the coupling strength
increases monotonously with |un| but with negligible effect on the onsite potential. Insets show the pressure
fields in the two cavities which are in-phase for the lower frequency mode but out-of-phase for the higher
frequency mode, indicating a negative coupling effect. As a result, we can use a TBM to fit this two-cavity
system with a two-element Hamiltonian H = [f0, t; t, f0], in which t ∈ R represents the hopping coefficient.
The eigenfrequencies are plotted as functions of un in figure 1(b). From the splitting of the eigenfrequencies
we can also extract the hopping t, which clearly has a one-to-one correspondence to un. When the short
coupling channel is replaced with a long one, as shown in figure 1(c), it is easy to find that there is still a
good linear relationship between |up| and t. Comparing figures 1(b) and (c), the parities of the lower and
higher modes are flipped, which indicates different signs of the hopping coefficient. From the modal
parities, it can be inferred that the short coupling channel introduces negative hopping, with even mode at
a lower frequency, whereas the long channel introduces positive hopping, for which the lower mode is an
odd mode. Compared with other designs of hopping modulation [31, 33], the advantage here is that the
hopping can be freely tailored without affecting the onsite potential. As a result, we can easily design both
the strength and the sign of the coupling by using the two channels simultaneously.

2.2. Topological phase diagram of Harper models with β= 1/3
Before designing different topology system with the coupling strategies discussed above, we study the
topological properties of a hopping modulating commensurate Harper model with the Hamiltonian of the
TBM expressed as [34]

Ĥ (ϕ) =
N∑

j=1

f0c†j cj +

N−1∑
j=1

[tj,j+1 (ϕ) c†j cj+1 + H.c.], (1)

where N is the total number of the on-site elements with potential f0, j denotes the site indexes, c†j and cj are
respectively the creation and annihilation operators of the jth site. The hopping coefficient follows a cosine
modulation

tj,j+1 (ϕ) = t0 + tm cos(2πβj + ϕ), (2)
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Figure 1. (a) Schematic of an acoustic waveguide array with the coupling modulating along the propagating direction. The short
and long channels contribute to negative and positive coupling, respectively. The cross-section of the array reproduces a hopping
modulating commensurate Harper model. The right panel labels geometry parameters which are set as h = 20 mm, w = 4 mm,
ln = 10 mm, lp = 30 mm and hc = 2 mm, respectively. Here up and un are the positions of the coupling channels along the z
direction, and the waveguides are centered at z = 0. (b) Eigenfrequencies of the two-cavity system with short coupling channel
obtained from the FEM simulations as a function of un (black dots) and TBM calculations as a function of t (red curves),
respectively. Insets: eigenmodes for un =−7 and −1 mm, respectively. (c) Eigenfrequencies of the two-cavity system with long
coupling channel.

where ϕ is the initial modulating phase, t0 and tm are respectively the static coupling effect and modulating
strength, β is the spatial modulating frequency. For the case of β = 1/3, the unit cell of this hopping
modulating Harper model consists of three elements and its Hamiltonian is expressed as

H
(
ϕ, ky

)
=

⎡
⎣ f0 t1,2 (ϕ) t3,4 (ϕ) e−iky

t1,2 (ϕ) f0 t2,3 (ϕ)
t3,4 (ϕ) eiky t2,3 (ϕ) f0

⎤
⎦ , (3)

which represents an effective 2D system in the synthetic ky-ϕ space. The Chern number of the nth band is
defined as [35, 36]

Cn =
1

2π

∫ π

−π

dky

∫ 2π

0
dϕFn(ky,ϕ), (4)

where Fn

(
ky,ϕ

)
= 〈ψn|∇ky ,ϕ|ψn〉 is the Berry curvature. The topological invariants for the gaps are gap

Chern numbers, which are the summation of the band Chern numbers below them [37]. When the onsite
potentials of the Harper model are identical, the energy spectra shall be mirror symmetric about the zero
energy and the topological phases are determined by the relation between t0 and tm. We define energy gap
G as

G = min
ϕ,ky

(E2
ϕ,ky

− E1
ϕ,ky

), (5)

where E1
ϕ,ky

and E2
ϕ,ky

are the first and second band over the Brillouin zone. Figure 2 shows the energy gap G
as a function of tm/t0 and the figure is divided into three parts according to their topological features. For
the region of |tm/t0| < 4, where the hopping modulation tm is relatively weak compared with t0, the gap
Chern numbers are (−1, 1). For region of |tm/t0| > 4 with sufficiently strong hopping modulation tm, the
system is in a distinct topological phase with large gap Chern numbers (2, −2) and the energy gap G
increases monotonously with |tm/t0|. The extreme case is t0 = 0 where the hopping tj,j+1 (ϕ) just modulates
around 0 and the system will have the maximum global band gap G = 0.65tm. For the phase transition
points of |tm/t0| = 4, the two energy gaps close and the topological invariants are not well defined. As a
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Figure 2. Phase diagram for the hopping modulating Harper model with β = 1/3. The black curve delineates the size of the
energy gap G as a function of tm/t0. Gap Chern numbers are indicated in the parentheses.

result, figure 2 gives clear guidance for designing and selecting the topological feature of the Harper model
with β = 1/3.

2.3. Topological pumping with gap Chern number of 2
To get Chern numbers larger than one in a trimeric hopping modulating Harper model, according to the
topological phase diagram in figure 2, the hopping should be designed within a quite large range covering
both negative and positive values. Thus, as shown in figure 1(a), both short and long channels are employed
to design the coupling coefficients. We set the center of the waveguides to be z = 0 and the positions of the
coupling channels are modulated by

un
j,j+1 (ϕ) = un

m[cos
(
2πj/3 + ϕ

)
< 0], (6a)

up
j,j+1 (ϕ) = up

m[cos
(
2πj/3 + ϕ

)
> 0], (6b)

where un
m and up

m are the modulating amplitudes for short and long coupling channels, respectively. There
are two channels between every two waveguides, according to equation (6) and their positions change
alternatively so that one of the channels always stays at the center of the waveguide with no coupling
contribution. We choose un

m = 6 mm and up
m = 7 mm so that both the positive and negative couplings

share the same modulating amplitudes. As a result, the cross-section of the whole waveguide array
reproduces a commensurate Harper model with hopping modulating as

tj,j+1 (ϕ) = 0 + 0.1f0 cos(2πj/3 + ϕ). (7)

Using both the FEM simulations and the TBMs calculations, we get the energy spectra of the array’s
cross-section with N = 14 and the results as a function of ϕ are shown in figures 3(a) and (b). The spectra
match well, meaning that the waveguide array’s cross section can be effectively fitted by a TBM. The band
structures both have 3 groups of bulk bands separated by two gaps which are bridged by topological
boundary states (TBSs). We also note the energy spectra are almost mirror symmetric about f0 due to the
chiral symmetry [38]. Here we have |tm/t0| = ∞, so the gap Chern numbers are I1 = 2 and I2 = −2,
respectively, which are labeled in figure 3(b). According to the bulk-edge correspondence, every side of the
system has two TBSs [18, 39, 40]. For ϕ varying from −π to π, the TBSs in the gaps can transfer from the
left to the right side of the system twice, which is clearly illustrated with the mode field distributions and
eigenfunctions in figures 3(c) and (d). Due to the presence of both the positive and negative hopping effect,
the energy gap is large as 0.065f0, and the TBSs are very robust against disorders, which will be
demonstrated with the topological pumping process. Note that the details of the TBSs depend on the
boundary types. In our system, the total number of the waveguides N contributes to additional freedom to
design the configurations of the TBSs [23]. In addition, there are infinite bands in our acoustic coupling
system, and the higher frequency gaps may exhibit higher Chern numbers. However, these bands are usually
messy and the gaps are too small to support well-localized edge states. This might be the reason why the
gaps with higher Chern numbers are less researched [3–6]. However, higher gap Chern numbers mean
more TBSs in the gaps, which are beneficial for designing multimode waveguides [39, 40]. As a result, in
this work, we mainly explore the topological systems with higher gap Chern numbers to showcase the
advantage of our hopping design strategy.
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Figure 3. (a) Energy spectra obtained by FEM simulation of the waveguide array’s cross-section as a function of ϕ and (b) by
solving the TBM Hamiltonian with open boundaries. Gray curves are bulk states and black curves are TBSs. Red arrow curves
denote the pumping processes. (c) Mode field distributions and (d) eigenfunctions for the cases labeled in (a) and (b),
respectively.

Considering the wave propagations in such a waveguide array, the first-order guiding mode can be
described as |ψn (ϕ)〉eikxx, where |ψn (ϕ)〉 is the mode field distributions of the nth eigenfrequency fH,n (ϕ).
When we set the working frequency as fw, the propagating constant can be calculated as kx,n(ϕ) =

2π/c
√

f 2
w − f 2

H,n(ϕ) [41] where c is the sound speed of the medium. Since the wave dynamics in such

waveguide array is determined by ϕ, as schematically shown in figure 1(a), we enforce the adiabatic
variation of ϕ in the waveguide array by slowly modulating the coupling channels along the propagating x
direction such that ϕ is linearly linked with x. Then the wave propagation can be described as

− i∂x|ψ (x)〉 = H(x)|ψ (x)〉. (8)

Notice that this equation is mathematically similar to Schrödinger equation with temporal derivative
replaced by spatial derivative.

Now we revisit the eigenvalues in figure 3(a) and study the pumping process of the TBS in the upper
bandgap. When ϕ varies from −π to −π, this TBS transfers from the left side (marked as A and C) to the
right side (B and D) of the system twice. In the 3D waveguide system (figure 1(a)), the acoustic energy
should be pumped from one side to the opposite side by slowly modulating the hopping along the
propagating direction. For a practical implementation, we set the length of the array as L = 1 m and the
positions of the coupling channels follow equation (6) with ϕ varying continuously from ϕA = −0.8π to
ϕB = −0.5π. When we put an acoustic dipole source of 9500 Hz at the left side of the array, as shown in
figure 3(a), the acoustic wave follows the adiabatic evolution and emerges into the bulk firstly and lets out
from the right side finally. The inset shows the pumping ratio which is defined as energy in the rightmost
two waveguides over all the energy at the output for the case from A to B. When L > 0.5 m, the adiabatic
condition is well satisfied and most of the energy is pumped to the right side. Here we also provide the
corresponding mode areas Sm of the TBS and bulk states. Sm quantitatively shows the localization of the
eigenmode for the array’s cross-section [42, 43] and is defined as:

Sm(ϕ) =

∫∫
|p(r,ϕ)|2dr

max{|p(r,ϕ)|2} , (9)

where r represents all the area of the cross-section. For TBSs in which acoustic energy is mainly localized at
the boundaries, their Sm should be small as compared to bulk states for which energy is dispersed across the
system. For the process of A to B, as shown in figure 4(b), the TBS’s mode area Sm increases first and then

5
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Figure 4. (a) Simulated pumping process of waveguide arrays with a length L = 1 m and ϕ varying from ϕA = −0.8π to
ϕB = −0.5π. The red star marks the exciting source location with fw = 9500 Hz and inset shows the pumping ratio with L.
(b) Mode areas of the corresponding TBS and bulk modes. Pseudo colors from blue to red are used to visualize the weightings of
the left and right TBSs. (c) The pumping process for C to D with ϕ varying from ϕC = 0.15π to ϕD = 0.45π and (d) the
corresponding mode areas.

Figure 5. Robustness analysis of the pumping process of (a) A to B and (b) C to D. The inset shows the random numbers for the
perturbation function. Other parameters are the same as in figure 4.

decreases. Its localization property is also marked in different colors, which indicates the TBS transfers
continuously from the left side to the right side via some bulk states and is consistent with the field
distributions in figure 4(a). For the process of C to D, in which ϕ varies from ϕC = 0.15π to ϕD = 0.45π,
the TBS also transfers from the left to the right side and there is an up-and-down process for its mode area,
which is clearly shown in figure 4(d). As a result, as shown in figure 4(c) and the inset, adiabatic condition
can also be well satisfied when L > 0.4 m and the acoustic energy will be pumped from the left to the right
side of the array. However, for the processes of B to C or D to A, the TBSs are very close to the bulk states.
Therefore, much longer waveguides are needed for the adiabatic condition to be well satisfied.

To demonstrate the strong robustness of our system against defects, here we introduce disorders to the
system in the form of random perturbations for the coupling channels’ positions along the z direction. The
perturbation function is give as δu = sumR(−1,1), where s = 0.1 is the perturbation strength, um = 6.5 mm is
the average modulation amplitude for the channels and R(−1,1) is a random number within (−1, 1). As
shown in figure 5, both the pumping processes are well preserved under such large disorders. We note the
strong robustness is guaranteed by the large gap, which is attributed to the introduction of both the positive
and negative hopping effects.

2.4. Topological pumping with β= 1/5
Since Harper models are connected to the two-dimensional Hofstadter spectrum of the integer quantum
Hall effect [44], instead of designing both positive and negative hopping effects simultaneously, we can
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Figure 6. (a) Energy spectra obtained by FEM simulation of the waveguide array’s cross-section as a function of ϕ. There is only
one short coupling channel between every two waveguides, and the channel position follows equation (10), where we set β = 1/5,
N = 19, u0 = −4 mm and um = 3 mm. Other parameters are the same as in figure 1. (b) Energy spectra obtained by solving
the Hamiltonian of the Harper models with hopping modulated as equation (11). (c) Mode field distributions and
(d) eigenfunctions for the cases labeled in (a) and (b), respectively.

change the spatial modulating frequency β to get gaps with higher Chern numbers (the Hofstadter spectra
are provided in the appendix). For example, there are gaps with Chern numbers of ±2 when we set β = 1/5.
However, we find the gaps of this topological phase are small, thus the system is not robust enough for
topological pumping behaviors. For demonstration, here we only use the short channels for the hopping
design and modulate their positions as

uj,j+1 (ϕ) = −u0 + um cos(2πj/5 + ϕ). (10)

According to the coupling analysis shown in figure 1(b), we set u0 = −4 mm and um = 3 mm so that
the cross-section of the whole waveguide array reproduces a commensurate Harper model with hopping
modulated as

tj,j+1 (ϕ) = −0.05f0 + 0.05f0 cos(2πj/5 + ϕ). (11)

With these parameters, a system with N = 19 is analyzed and the spectra for the FEM simulations and TBM
calculations are shown in figures 6(a) and (b), respectively. As labeled in figure 6(b), the central two gaps
are with Chern numbers of I2 = −2 and I3 = 2, respectively. However, because the hopping modulation
amplitude reduces by half but the gap number doubles, here the two gaps are much smaller and are only
about one-third of the gaps in figures 3(a) and (b). As a result, the TBSs, whose profiles are shown in
figures 6(c) and (d), are not well localized at the boundaries, and the robustness of the system is not strong.

Now we numerically study the topological pumping processes in this waveguide system, where the
channels’ positions are continuously modulated along the propagating direction following equation (10).
For the process of A to B, in which ϕ of the waveguide array varies from ϕA = −0.95π to ϕB = −0.65π, we
use fw = 8800 Hz as the working frequency to excite the TBS in the third bandgap. As shown in figure 7(a),
the acoustic energy cannot be completely pumped to the opposite side of the array even when we set the
waveguide length L = 2 m. Considering the poor localization of the TBSs, here the pumping ratio is defined
as the energy in the rightmost four waveguides over all the energy at the output. Comparatively, the
pumping ratios in the inset are much lower than the cases in figure 4. To test the robustness of the system,
we also introduce perturbations to the channels’ positions and keep s = 0.1 for the perturbation function
δu = sumR(−1,1). Though here the modulation amplitude um decreases to 3 mm, as shown in figure 7(b), the
pumping process almost fails after introducing the disorders. According to figures 7(c) and (d), which are
about the process of C to D with ϕ varying from ϕC = 0.05π to ϕD = 0.35π, we can get the same
conclusion that the system is fragile and the pumping efficiency is relatively low. As a result, our strategy for

7
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Figure 7. (a) Simulated pumping process in a waveguide array with length L = 2 m and ϕ varying from ϕA = −0.95π to
ϕB = −0.65π. The working frequency is fw = 8800 Hz and the inset shows the pumping ratio with L. (b) The pumping process
with disorders for the channel positions. The inset shows the random numbers for the perturbations. (c) and (d) The pumping
process for C to D with ϕ varying from ϕC = 0.05π to ϕD = 0.35π. The pumping processes are of low efficiency and fail with
the introduction of disorders.

designing positive and negative hopping effects has great advantages for designing novel topological phases
and implementing topological pumping with gap Chern numbers larger than one.

In addition, the hopping modulation strategy developed in this work also shows many advantages when
compared with the modulation of onsite potentials [23]. First of all, since both the strength and sign of the
hopping effect can be tailored freely, we have more freedom to design the topological phases. As proved in
section 2.3, by introducing both the positive and negative hopping effects simultaneously, we can get
enlarged gaps with Chern numbers of ±2 when the spatial modulating frequency is β = 1/3. However, for
onsite modulating Harper models with the same β, we can only get gap Chern numbers of ±1 even we
increase the modulation amplitude to a large unrealizable value. Secondly, the hopping modulation strategy
in our acoustic waveguide system may have higher experimental feasibility for the topological pumping
process. Specifically, our hopping modulation is applied to the positions of the coupling channels, which
vary within half of the waveguide’s height. By contrast, for the onsite potential modulation, the variables are
the heights of the waveguides, which can only be modulated within a much smaller range for mapping a
Harper model. In addition, the hopping modulation strategy is more applicable for showcasing the
pumping process of higher-order topological states, such as the corner states [31].

3. Conclusion

To conclude, we propose a design of acoustic waveguide arrays whose cross-sections reproduce hopping
modulating Harper models. By introducing both positive and negative coupling effects simultaneously, a
distinct topological phase appears, and we can get topological gaps with larger sizes and higher Chern
numbers simultaneously. With doubled hopping modulating amplitude, the edge states therein have strong
robustness, which is guaranteed by the large gap sizes. With the hopping continuously modulated along the
propagating direction to enforce adiabatic variations, topological pumping is numerically implemented as
input acoustic energy transfers from one side of the array to the opposite. Our work provides an insight to
the physics underlying the coupling effect and offers new possibilities for manipulating acoustic waves and
other classical waves, with far-reaching impact in acoustic and many related fields.
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Appendix. Hofstadter energy spectrum

In this appendix, we analyze the hopping modulating Harper models with the Hofstadter energy spectrum,
which clearly present the fractal structure of the topological gaps. For the hopping effect in equation (2)
that tj,j+1 = t0 + tm cos(2πβj), we define case A with t0 = 0.05f0 and tm = 0.05f0, which refers to the regular
coupling modulation, and define case B with t0 = 0 and tm = 0.1f0, where both the positive and negative
coupling effects are involved. When β samples rational values from 0 to 1, we get the corresponding
Hofstadter butterfly spectra, which are shown in figure A1.

For case A with regular hopping modulation, the largest gaps are with Chern numbers of |I| = 1. There
are gaps with higher Chern numbers, but their sizes are much smaller. By contrast, when both positive and
negative hopping effects are involved in case B, the largest gaps have |I| = 2. In addition, except β = 0.5, the
spectrum is also symmetric about β = 0.25 and β = 0.75, which can be attributed to the zero-centered
hopping modulation function. As a result, mixing positive and negative coupling effects is an effective way
to increase the hopping modulation amplitude and to realize wide gaps with distinct topological features.
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