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The sensitivity of optical measurement is ultimately constrained by the shot noise to the standard quantum limit. It has
become a common concept that beating this limit requires quantum resources. A deep-learning neural network free of
quantum principle has the capability of removing classical noise from images, but it is unclear in reducing quantum noise.
In a coincidence-imaging experiment, we show that quantum-resource-free deep learning can be exploited to surpass the
standard quantum limit via the photon-number-dependent nonlinear feedback during training. Using an effective classical
light with photon flux of about 9 × 104 photons per second, our deep-learning-based scheme achieves a 14 dB improvement
in signal-to-noise ratio with respect to the standard quantum limit.
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1. Introduction

Optical measurement with sensitivity as high as possible is
highly demanded in various science and technology, ranging
from biology and astronomy to quantum information[1–3].
However, the sensitivity of optical measurements is ultimately
limited by the shot noise due to the quantum fluctuation of occu-
pation of the probe field, imposing a constraint on the standard
quantum limit (SQL) to the sensitivity limit[4–8]. Quantum
resources such as squeezed quantum states[2,3,9–12] and highly
entangled states[13–16] have been proposed and successfully used
to improve the measurement sensitivity beyond the SQL.
Squeezed vacuum fields have also been exploited to reduce
the noise level below the SQL in optical interferometers[3,10].
Nevertheless, the squeezing-resulting improvement is easily
destroyed by loss and phase noise. Thus, a deeply squeezed light
is required to achieve a sensitivity far beyond the SQL but is very
challenging to be prepared for a strong light. Alternatively, weak
measurements[17–20] have been proposed for beating the SQL in
special circumstances. A nonlinear interferometer combined
with quantum entanglement can even beat the Heisenberg limit
of measurement[2,21–25]. It is desirable to develop an approach

for surpassing the SQLwithin a broadband and valid for a strong
light including a huge number of photons.
Deep learning (DL) has become the working horse of improv-

ing performance of pattern recognition[26,27], quantum informa-
tion technology[28], and imaging[29–32]. DL mathematically
treats noise as a random fluctuation of signals and has demon-
strated the capability of beating some fundamental limit in phys-
ics such as the diffraction limit[30,33]. Note that machine learning
has been exploited to achieve a sensitivity scaling better than the
SQL. Nevertheless, it still requires entangled qubits in measure-
ment[34]. Here we show that a DL neural network with the
“noise2noise” protocol can suppress quantum noise without
prior knowledge of a clean signal. Our work, which is free of
using quantum entanglement or squeezing of the probe field
such as entanglement or squeezing, provides a general approach
to beat the SQL in the classical regime.

2. DL-Based Denoising Protocol

In the mathematical sense, DL can reduce random fluctuations
of a detected signal, irrespective of the origin of the noise.
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Considering that the obtained signal is noisy in the practical
measurement, we utilize the so-called noise2noise DL protocol,
which can exploit the noisy signal as a target to reduce the noise
in detection. In principle, a neural network depicted in Fig. 1(a)
can bemodeled as a regressor function f θ, where θ is the network
parameter set. After the DL network is fed with a set of data pairs
f�x̂i, ŷi�g of noisy inputs fx̂ig and noisy targets fŷig, the regressor
function f θ and its parameter set fθg can be determined by the
training process. The basic idea of neural network training is to
minimize error between the network outputs and the given tar-
gets. The training process can generally be mathematically
described as f θ = argmin

θ

P
i L�f θ�x̂i�, ŷi�, where L is the loss

function measuring error between the network output and the
target. By specifying this loss function as a L2 loss function,
namely the least squared error, we exploit the DL noise2noise
protocol.
We now explain how a neural network with the noise2noise

protocol can be used to suppress the shot noise and subsequently

beat the SQL inmeasurement.We consider an observed imaging
r with noise in our optical measurement given by[35]

r = s� p�s� � n, �1�

where s stands for the real signal of interest, p�s� represents the
shot noise, and n stands for other system noise, such as the dark
current noise and the readout noise. Note that both the dark cur-
rent noise and the readout noise are statistically independent of
the real signal. One can always set their mean values to zero via
background subtraction. Thus, we can assume that n satisfies the
zero-mean condition without loss of generality. On the other
hand, the shot noise p�s� is theoretically a quantum fluctuation
of received photon numbers. The probe signal with the fluc-
tuation, s� p�s�, obeys the Poisson distribution. We are inter-
ested in the signal s, which is actually the averaged photon
number and thus has no fluctuation. The distribution of the fluc-
tuation p�s�, denoting the shot noise in measurement, can be

Fig. 1. (a) Schematic of the noise2noise protocol. Both the inputs and targets during training are noisy data, and the loss function is L2 loss. With this protocol, the
well-trained DL neural network can denoise the input noisy signal. (b) Diagram model for U-net. The structure includes two parts: the contracting part (left yellow
area) and the expansive part (right pink area). Each slab represents a layer in the neural network. Colors indicate different types of layers, as shown by legends.
(c) Schematic of data set preparation process. First, we randomly choose m frames from the original image data set {D(o)}. These frames generate a new image
through accumulation and min-max normalization. This procedure is repeated N(r) times to obtain the regrouped image data set, including N(r) frames. Then, the
new data set is used for training.
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considered as a shifted Poisson distribution with zero-
mean value.
In the noise2noise protocol, the input and target data sets are

noisy data sets frinputg and frtargetg, respectively. Then, we can
mathematically describe the training process of the DL neural
network with L2 loss as

f θ−trained = argmin
θ

X
i

�f θ�rinput� − rtarget�2, (2)

where f θ and f θ−trained are the network functions during training
and after training, respectively. f θ updates during the training
process. By substituting Eq. (1) into Eq. (2), we obtain

f θ−trained

=argmin
θ

X
i

ff θ�s�pinput�s��ninput�− �s�ptarget�s��ntarget�g2:

(3)

To minimize the loss in Eq. (3), f θ−trained needs to satisfy

f θ−trained�s� pinput�s� � ninput� ∼ E�s� ptarget�s� � ntarget� ∼ s,

(4)

where the function E calculates the ensemble moment.
Equation (4) holds because both p�s� and n are the zero-mean
distributions. This DL training process implicitly includes an
extremely nonlinear feedback dependent on photon number
“seen” by pixels. Thus, all types of noise in optical measurement
can be reduced with our DL neural network.
Importantly, the nonlinear feedback enables the DL neural

network to surpass the SQL for optical imaging. Physically,
the probe field seen by a pixel collapses to a photon number state
during each measurement. The photon number state can vary
pixel by pixel and also fluctuate as measurement is ongoing.
This fluctuation includes the shot noise and leads to the quan-
tum standard limit in classical optical measurement. Now, we
consider our DL-enhanced imaging. Assuming the original im-
aging has reached the standard quantum limit, which is reason-
able in this coincidence imaging, the obtained image frame
during each measurement can be modeled as

rm�l, q� = PPoisson�Nm · Ppattern�l, q��, �5�

where rm represents the obtained image frame of the mth mea-
surement, l and q are the pixel locations on the optical imaging
device, Nm is the total number of photons received by imaging
device in the mth measurement, and Ppattern denotes the ideal
pattern of photon distribution. Equation (5) indicates that the
photon number on each pixel at �l, q� obeys the Poisson distri-
bution with a moment λPoisson = Nm · Ppattern�x, y�.
After the training is completed, for new input data r 0m�l 0, q 0� at

pixel �l 0, q 0�, the DL neural network returns an output as

f θ−trained�r 0m�l 0, q 0�� = Poutput�Nm · Ppattern�l 0, q 0��: (6)

Here Poutput represents the photon number distribution given
by well-trained DL network and is different from that of rm�l, q�
because of the nonlinear feedback. With the training process of
Eq. (2), the L2 loss between Poutput and PPoisson is as small as pos-
sible. Then, the variance of Poutput, meaning the suppressed
noise, can reduce to a level well below the shot noise.
This work shows the capability of using the noise2noise-based

DL scheme to surpass the SQL in practical imaging. Note that
optical imaging here, surpassing the SQL means to improve
the signal-to-noise ratio (SNR) above the constraint imposed
by the shot noise, when the overall number of photons is fixed
during measurement. In practical measurement, the traditional
noise2clean-based DL denoising approach may use the averaged
image with a long exposure time as the clean target image. The
availablemaximal SNR is up to that of the averaged image. These
traditional methods need more photons or quantum resources.
Therefore, they cannot surpass the SQL.
We used an end-to-end DL neural network, called U-net[36].

The specific structure of the U-net is shown in Fig. 1(b). It
includes two parts: the contracting path (yellow area) and the
expansive path (pink area). The contracting path consists of four
repeating encoder units. Each encoder unit has five layers: two
3 × 3 convolutional layers followed by a rectified linear unit
(ReLU), and a 2 × 2 max pooling layer as the encoder unit.
The contracting path extracts a multiscale latent representation
of the input image. The expansive path also consists of four
repeating decoder units. Each decoder units has seven layers:
two 3 × 3 convolutional layers, each followed by a ReLU, one 2 ×
2 transposed convolutional layer followed by a ReLU, and then a
depth concatenation layer. In the end of the expansive path,
there is a 1 × 1 convolutional layer as the final output layer.
This comprehensive expansive path decompresses the represen-
tation from the contracting path to complete an end-to-end DL
of target images.
Our DL-based denoising scheme can be divided into

two stages: data preparation and training. The data preparation
stage is depicted in Fig. 1(c). The ith frame original image

data obtained in experiment are denoted as fD�o�
i g with

i = f1, 2, : : : ,N�o�g, where N�o� is the total number of image
frames. In our experiment, we conduct the single-photon coinci-
dence imaging with heralded single photons. Each original
image frame only contains a few photons and is unsuitable
for neural network training. In the data preparation stage, we
randomly choose m frames with equal probability from fD�o�g
and then accumulate them into a new image frame. We apply
min-max normalization on it. This procedure is repeated N�r�

times. In doing so, we obtain a new image data set fD�r�g con-
sisting of N�r� image frames. This new data set is equally divided
into an input set and a target set. Each input frame corresponds
to a target frame to form a noise2noise training pair. These pairs
are then used in the training of the U-net. The training pro-
cedure updates the weights of the DL neural network. Once
training finishes, we accumulate all the well-trained output
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image frames into the final denoised image. Our U-net training
process is performed on an Intel Xeon Platinum 8180 CPU with
MATLAB R2021a (see detailed hyperparameters in
Appendix B).

3. Experimental Setup for Coincidence Imaging

We experimentally validate the suppression of the shot noise by
using a DL neural network with the noise2noise DL protocol in
single-photon coincidence imaging. Our experimental setup for
generating the single-photon Airy pattern in each shot is shown
in Fig. 2(a). We generate polarization-entangled heralded single
photons from a spontaneous parametric downconversion proc-
ess in a Sagnac interferometer embedded with a PPKTP crys-
tal[37]. The generation rate of correlated photon pairs is 9 kHz
with a 5-ns coincidence measurement time window. Signal pho-
tons generated from the spontaneous parametric downconver-
sion process are coupled out from an optical fiber with a fiber
port and then pass through a polarizing beam splitter. After that,
these single photons are incident on a reflective spatial light
modulator (SLM) with the desired cubic phase modulation.
The SLM generates the Airy pattern at the focal plane of lens
L. Generally, this SLM can be replaced with any scattering
objects. Idler photons are collected to trigger the iCCD for detec-
tion of signal photons. The optical gate width of iCCD is set as
5 ns. The iCCD is in the integrate-on-chip mode with an expo-
sure timeΔte, which determines the accumulating period of sig-
nal photons before the imaging is read out. A 22-m-long optical
fiber is used as a delay line to compensate for the electric delay of
the iCCD. This ensures that signal photons reach the camera at
the same time when the camera is triggered by the heralding
detection of idler photons, which is in temporal correlation with
signal photons. To make a convincing comparison between the
shot noise and our DL-enhanced results, we use a trivial coinci-
dence imaging to mimic the background noise other than the
shot noise by switching on the time gate of the iCCD only when
signal photons arrive. In our setup, signal photons are scattered
by the object and directly detected by the iCCD. Thus, our
arrangement is essentially different from the standard ghost im-
aging, in which photons in the scattering path are detected for
triggering the detection of reference photons[38,39]. Here, the
temporal correlation between idler and signal photons is
explored to generate a gate signal for switching on the iCCD.
It can be replaced with an electric gate signal if coherent laser
pulses are used for imaging.

4. Beating the Shot Noise with DL

The small value of the conditional second-order correlation
function clearly shows that the heralded single-photon source
has a good single-photon nature and the two- or multiphoton
events can be neglected (see details in Appendix A). The coinci-
dence imaging is conducted in the setup shown in Fig. 2(a).
Figure 2(b) shows the observed image accumulated over a single
frame, 50 frames, 500 frames, and 5000 frames, respectively. For

each frame, the exposure time isΔte = 0.2 s. These images clarify
the single-photon coincidence imaging.
We first characterize noise in our experiment. According to

Ref. [40], the shot noise Nshot of a light field detected by the
iCCD can be described as

Nshot = G × F ×
���������������
ηϕpΔte

q
, (7)

where G, F, and η are, respectively, the electron gain factor, the
noise factor, and quantum efficiency. ϕp is the mean photon flux
of the light beam incident to each pixel, and Δte indicates the
integration time in photon detection. Both dark current noise
and readout noise are irrelevant with ϕp. The total noise Nexp

detected by each pixel dominantly attributes to the shot noise,
dark current noise, and readout noise, respectively. We have

Fig. 2. Single-photon coincidence imaging of an Airy pattern. (a) Experimental
setup. QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarizing beam
splitter; M, mirror; SPCM, single-photon counting module; PM, phase modula-
tion; SLM, spatial light modulator; DM, dichroic mirror; DPBS, dual-wavelength
PBS; DHWP, dual-wavelength HWP. An SLM is used as a scattering object to
generate the Airy pattern. (b) Images accumulated over 1, 50, 500, and 5000
frames, respectively. The exposure time are Δte = 0.2 s. (c) Positions of
the pixels (red points) that are chosen to calculate the variance in (d); (d) vari-
ance of the photon-number distribution versus the mean photon number

n̄photon. A linear function (red line), σ
2 = 59.19n̄photon − 19.15, fits the variance

well.
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Nexp =
�����
σ2

p
, where σ2 is the variance of observed pixel bright-

ness. Therefore, if the experimental system reaches the shot-
noise limit, σ2 is linearly dependent on ϕp when Δte is fixed.
Figures 2(c) and 2(d) confirm that our experiment is shot-

noise-limited. In experiment, the exposure time of each frame
is set to Δte = 0.2 s. We collect 10,000 original imaging frames.
As shown in Fig. 2(c), we choose 100 pixels indicated by the red
dots in all 10,000 frames to calculate the mean photon flux ϕp

and the corresponding noise variance σ2. The results are shown
in Fig. 2(d). Clearly, the variance σ2 increases linearly with ϕpΔe.
The value of the mean phonon number n̄photon is the original
readout brightness of the iCCD. It is proportional to the “real”
photon number, according to the working mechanism of the
iCCD. This verifies that our experiment system is shot-noise-
limited.
Figure 3 shows that our DL algorithm can greatly reduce the

noise of imaging. We measure the single-photon Airy pattern
with Δte = 0.1 s and 0.5 s, respectively. For each Δte, the data
set consists of 5000 original frames. The experimental images
are directly accumulated from the original data set and then
min-max normalized. They are equivalent to the standard aver-
aged results, being subject to the SQL. To obtain DL-enhanced
images, we create the training data set according to the pro-
cedure depicted in Fig. 1(c) with parameters m = 500 and

N�r� = 1500. Then, this data set is fed into the neural network.
The top and side views of the experimental and DL-enhanced
images are illustrated in the left and middle columns. Some
subtle peaks are overwhelmed by strong noise in the original
images and thus are indistinguishable. In contrast, our DL neu-
ral network considerably reduces the noise level and generates
much clearer images. As a result, more details of the imaging
structure, including the blur peaks, become distinguishable.
The right-column plots show the profiles along the red lines
in the Airy patterns. After denoising, the DL-enhanced results
clearly display two and four more peaks in comparison with
the original images. The middle column shows that the DL algo-
rithm has significantly reduced the amplitude of noise in a sig-
nal-free area (e.g., pixel position in x direction from 0 to 50).
With the exposure time Δte increasing (see gray bars in right
column of Fig. 6 in Appendix C), the noise level and variance
of the directly accumulated images approach those of the DL-
enhanced results, respectively. This implies that the DL algo-
rithm can remarkably suppress the shot noise within the same
measurement time. In Fig. 3(b), we also plot the envelope of the
theoretical Airy pattern (see also Appendix D). It can be seen
that the envelope of the DL-enhanced result is better fitted by
the theoretical envelope because the shot noise is greatly
reduced.
Figure 4 characterizes the denoising performance of our DL

algorithm by comparing the SNR between the original and the
DL-enhanced images. Here, we use two definitions for SNR.
Both are widely used for evaluating the performance ofmeasure-
ment[41]. The first type of SNR is defined as

SNR�1� = 10 lg�Psignal=σ
2
noise�, (8)

where Psignal is the central pixel brightness of the main peak of
the Airy pattern, indicated by a red dot in Fig. 4(a), and σ2noise is
the variance of the pure noise area indicated by the red box.
Figure 4(b) shows the directly accumulated SNR�1� using the
original and the DL-enhanced images versus the exposure time
Δte. This SNR�1� in both imaging methods increases with the
exposure time increasing. Because the original image is at the
shot-noise level, its SNR definitely reaches the SQL. In contrast
to the standard accumulation scheme, the DL-based scheme can
greatly improve the SNR. Basically, the improvement increases

Fig. 3. Original and DL-enhanced Airy patterns for exposure time (a) Δte =
0.1 s and (b) 0.5 s, respectively; left column, top view of the original and
DL-enhanced Airy patterns; middle column, projecting the Airy pattern to
the y direction (side view); right column, brightness profiles along the red lines
in the Airy pattern in left column. Red arrows are guides to the eye for the
peaks appearing in the DL-enhanced images but indistinguishable in the origi-
nal ones. Red curves in (b) represent the envelope of a theoretical Airy
pattern.

Fig. 4. SNRs for the direct accumulation and the DL-based scheme.
(a) Original image showing the areas for calculating SNR. The red dot indicates
the center of the main peak of the Airy pattern. The red box surrounds a pure
noise area. (b) SNR(1) versus the exposure time Δte; (c) SNR(2) versus the
regroup size m.
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as the exposure time increases, corresponding to an effectively
stronger classical light beam used for imaging. This DL-based
scheme surpasses the SQL by more than 15 dB when
Δte = 0.5 s, corresponding to about 18,000 photons detected
in each frame. This shows that a DL neural network can beat the
SQL inmeasurement without requiring quantum resources such
as entanglement and squeezing, or prior knowledge of signals.
The improvement provided by the DL-based scheme can be

further verified with the second type of SNR, defined as

SNR�2� = 10 lg�Psignal=σ
2
signal�, (9)

where the variance σ2signal is calculated from the central pixel
brightness of the main peak in the regrouped data sets. To evalu-
ate SNR�2�, we first measure 104 original image frames under an
exposure time ofΔte = 0.2 s. Then, according to the data-prepa-
ration procedure, we create 10 regrouped data sets with a group-
ing size m ranging from 100 to 1000. Each regrouped data set
contains 3000 frames, yielding 1500 frame pairs. The DL algo-
rithm is then applied to obtain the corresponding denoised data
sets for each regrouped data set. The variance σ2signal shown in

Fig. 4(c) is calculated from the regrouped data set and the
DL-enhanced data set, respectively. The DL-based scheme has
significantly reduced the variance of the directly accumulated
signal, indicating a great suppression of the shot noise. At
m=103, the SNR is improved by about 14 dB. Because the
observed signal’s variance represents the shot-noise level, the
DL-based scheme clearly reaches an SNR far beyond the SQL.
Each image in the regrouped data set is equivalent to an obser-
vation with an exposure timemΔte, varying from 20 to 200 s. In
doing so, we equivalently conduct imaging with a classical
coherent light including 7 × 105–7 × 106 photons in each frame
(see Appendix A).

5. Conclusion and Discussion

In summary, we have proposed and demonstrated a DL-based
denoising scheme to achieve measurement sensitivity beyond
the SQL with only a classical resource. The photon-number-de-
pendent nonlinear feedback during training significantly sup-
presses the shot noise inherently existing in measurement.
This work opens the door to achieve unprecedented precision
in measurement. Meanwhile, the data postprocessing nature
of our scheme makes it generally valid for various measurement
systems. This DL-based denoising scheme is not limited to opti-
cal imaging but is also applicable to spectroscopy and various
interferometers. It can even be extended to the microwave
and acoustic-wave domains.

Appendix A: Characterizing the Single-Photon Source

To characterize the heralded single-photon source, we measure
the conditional second-order coherence function. The function
is defined as the second-order correlation of the signal field, con-
ditioned on successfully detecting an idler photon count,

g�2�c �t1, t2jt1� ≡
hÊ†

s �t1�Ê†
s �t2�Ês�t2�Ês�t1�ipm

hÊ†
s �t1�Ês�t1�ipmhÊs�t2�Ês�t1�ipm

, (A1)

where the bracketed notation h·ipm means the ensemble average.
We experimentally tested the delayed correlation function

g�2�c �τ� ≡ g�2�c �ti, ti�τjti� = g�2�c �0, τj0�. The measured g�2�c �τ�with
a coincidence window Δtc = 5 ns is shown in Fig. 5. The small

value g�2�c �0� = 0.04 implies that our heralded single-photon
source is of good quality, and the two- or multiphoton events
can be neglected.
The number of received photons in a single frame with Δte is

estimated as

N frame =Φsource · ηsystem · Δte, �A2�

where Φsource is the coincident photon number per second
directly measured from the photon source, and ηsystem is the
overall transmission efficiency. In our experiment, the Φsource

is approximately 9 × 104 photons per second and the ηsystem is
39%. Thus, each frame with Δte = 0.2 s contains approximately
7 × 103 photons.

Appendix B: Hyperparameters

Here, we briefly introduce the important hyperparameters. The
most basic hyperparameter is the learning rate η, namely, a tun-
ing parameter in the optimization process that determines the
step size at each iteration. Another important hyperparameter
is the training epoch Nepoch, which indicates the number of
passes of the entire training data set. During the training, the
data sets are grouped into batches, including Sbatch samples each.
In this work, we set η=10−4, Nepoch = 2, and Sbatch = 24. The
hyperparameter choice of the DL-based scheme can be adjusted
as needed.

Appendix C: Characterizing the Denoising Performance

To further demonstrate the denoising performance of the DL-
based scheme, we present the distribution of the pure noise

Fig. 5. The conditional second-order correlation function gc
(2)(τ) versus the

delay τ.
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(no-signal area) before and after DL suppression, shown in
Fig. 6. Each row corresponds to the results under different expo-
sure time. The yellow boxes in the left column contain a
75 × 75-pixel no-signal area (pure noise area). For both original
(left column) and DL-enhanced Airy pattern (middle column),
we count the brightness of pixels in the same pure noise area.
The corresponding original and DL-suppressed noise distribu-
tions are presented in the right column, respectively (see the gray
and red bars). The distribution clearly shows that both the mean
noise and the variance reduce simultaneously. Thus, the SQL is
surpassed in the DL-based scheme and the DL-enhanced imag-
ing has a larger SNR. As the exposure time increases, both the
moment and variance of brightness in the original images reduce
and gradually approach the DL-enhanced results, as shown in
the right column. This indicates that our DL algorithm can sur-
pass the SQL of measurement.

Appendix D: Comparison with an Ideal Airy Pattern

The envelope ϕ of an ideal Airy beam is given by

ϕ = Ai�x� exp�ax� · Ai�y� exp�by�, (D1)

where Ai�·� represents the Airy function, x and y are the hori-
zontal and vertical coordinates of the Airy pattern on the iCCD
detection plane, respectively. Figure 7(a) shows the ideal Airy

pattern and its cross section profile is indicated by the red line.
By adjusting parameters a and b in Eq. (D1), the theoretical Airy
function fits the first two peaks of the accumulated and the DL-
enhanced images well, as shown in Fig. 7(b). Moreover, the
envelope (solid red curves) of the ideal Airy pattern is a better
fit with the DL-enhanced peaks than the directly accumulated
results. This reflects that the DL-enhanced result is closer to a
noiseless image.
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