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Optical tweezers (OTs) can immobilize and manipulate objects with sizes that span between nano- and micro-
meter scales. The manipulating ability of OTs is traditionally characterized by stability factor (S), which can only
indicate an empirical “hit-or-miss” process. Additionally, the current quantitative models for trapping stability
rarely consider the influence of external flow. In this paper, a comprehensive analysis to quantify the optical
trapping stability in a perturbed asymmetric potential well is presented from the perspective of statistics, espe-
cially for weak trapping scenarios. Our analytical formulation takes experimentally measurable parameters in-
cluding particle size, optical power, and spot width as inputs and precisely outputs a statistically relevant mean
trapping time. Importantly, this formulation takes into account general and realistic cases including fluidic flow
velocity and other perturbations. To verify the model, a back-focal-plane-interferometer-monitored trapping ex-
periment in a flow is set up and the statistical characteristics of trapping time demonstrate good agreement with
theoretical predictions. In total, the model quantitatively reveals the effects of external disturbance on trapping
time, which will find applications where optical trapping stability is challenged by external perturbations in weak

trapping conditions. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.527376

1. INTRODUCTION

Optical tweezers (OTs) are renowned for their non-invasiveness
in the trapping and manipulation of microscale and nanoscale
objects, which find wide applications in biology and nanotech-
nology [1-3]. In the past few decades, the manipulation of poly-
styrene (PS) spheres [4], cells [5], DNA molecules [6], and
proteins [7] has been realized and several microstructures for
optofluidic manipulation have been demonstrated [8-12], by
using single-beam (diffraction limited) or near-field optical trap-
ping techniques. Yang ¢t al. proposed a dielectric slot waveguide
capable of condensing accessible electromagnetic energy to cap-
ture and transport DNA molecules [13]. Cai and Poon utilized a
silicon nitride micro-disk resonator with whispering-gallery
modes to manipulate PS microparticles [14]. Yoon ez al. dem-
onstrated a double-well potential landscape and directly observed
the hopping of a single 4-nm particle by using metallic nano-

manipulating particles have been proposed and demonstrated,
such as switching [16], sorting [17], storing [18], and convey-
ing [19].

In order to estimate the trapping ability of an optical tweezer
system, trapping precision and trapping stability quantification
have been proposed and improved continuously. Traditionally,
users often adapt an empirical approach for optimizing their
experimental parameters. In the previous studies, a stability fac-
tor (§), which is proportional to the depth of the potential well
(S = AU/kgT), is assigned to empirically describe the trap-
ping stiffness [20]. Particles can be considered to be stably
trapped when § > 1. Uldimately, S only provides a binary out-
come since it only takes care of the energy aspects of the system,
which is related to the depth of a potential well. In addition, the
particle motion and distribution will be influenced by not only

the depth, but also the width and shape of the potential well.

antennas with various gap sizes and different optical pump
powers [15]. In addition, several applications for trapping and
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Therefore, S alone is incapable of assessing the trapping stabil-
ity and a new approach is required to evaluate the characteristics
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of trapping. Then, many researches on trapping or escaping
time based on Kramers time have been developed [11,21,22].
Simon and Libchaber have studied the residence time distribu-
tion in a double potential well when a 1-pm Brownian particle
is trapped [23]. Siler and Zemanek focused on the transition
problem of particles in periodic potential wells and proposed
the mean optical trap escape time (MOTET) to quantify
the particle motion [24]. Ferrer et al. have researched the in-
fluence of fluid viscoelasticity on transitions between a double
well [25]. However, the researches have rarely considered and
experimentally validated the influence of external disturbances
on trapping time.

In the actual applications, the external disturbance cannot
be overlooked. As shown in the conceptual image of Fig. 1,
Brownian motion [26,27], relative moving of environmental
liquid, and the laser-beam-induced thermal convection [28]
can affect particle motion and distributions. All the above dis-
turbance forces will diversely deform the potential well in dif-
ferent directions [29] and the escape rate will be increased on
the tilting side (lower barrier side of the potential well). As the
directional flow velocity continuously increases, the depth of
trapping the potential well would reduce to the level of average
kinetic energy of the particle. This case can be considered as a
weak trapping system resulting in the dynamic equilibrium
process of trapping and escaping. Moreover, the residence time
of particles in the potential well will satisfy a statistical distri-
bution, which is a relatively strict description for particle trap-
ping in a potential well. Therefore, an accurate prediction of
average trapping time or trapping time distribution can be cal-
culated [30,31]. Clearly, based on current researches on static
potential wells, there is an undisputed need to develop a com-
prehensive model for quantifying the trapping stability with an
external flow.

All of the above quantifying description is based on
obtaining a potential well, but for Gaussian beams, the poten-
tial well can be directly derived. In practical applications, a po-
tential well can only be calculated by integrating the optical
gradient force. And the force distribution only can be obtained

Fig. 1. A conceptual depiction of particle trapping in a dynamic
potential well with the presence of fluid flow and laser-beam-induced
thermal convection. The images above the flow channel represent the
potential well and particle distributions with (left) and without (right)
external flow.
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from numerical simulation or experimental measurement, which
is not very straightforward. Therefore, we take a Gaussian beam
as an example because it is the most commonly used light beam
for optical tweezers. The force distribution of a Gaussian
beam can be well defined when a particle can be viewed as a
dipole and can be uniquely determined by its power and waist
width. Therefore, its trapping stability could be quantitatively
identified.

In this work, we have studied trapping stability when
Brownian motion, relative movements, and external flow are
considered. The kinetics of an optically trapped object have
been formulated firstly in the static symmetric potential well
by the Fokker—Planck (FP) equation. Based on the revised
equation, the statistics of particle position in a flow-skewed po-
tential well, as well as a trapping time that provides a simple but
accurate descriptor of the trapping stability, have been calcu-
lated. To verify the model, we have set up an optical tweezer
system with a back-focal-plane interferometer that can monitor
the Brownian motion trajectory of the trapped particles. The
experimentally verified model can serve as a look-up function to
determine trapping stability for a given set of operation condi-
tions, implying strong potential for many branches of physical
and biological applications.

2. TRAPPING TIME IN A STATIC SYMMETRIC
POTENTIAL WELL

We first consider the case of an ideal static symmetric potential
well. When only gradient force (F,,,), viscous resistance (F g,),
and Brownian motion (Fp,) are considered, the generated po-
tential well will be symmetric, which is termed as a static
potential well. 7, can be obtained based on the method of
Maxwell’s stress tensor (MST) when the electric field distribu-
tion is defined. In this case, the position and motion trajectory
of a single spherical dielectric particle, which will be influenced
by the randomness of Brownian motion, can be numerically
simulated with a given time interval using a Langevin equation
[32,33]. Note that the Langevin equation used in the simula-
tion is an overdamped Langevin equation, which is valid for
most of the liquid background environment. When the envi-
ronment material becomes vacuum or gas, inertia and an
underdamped Langevin equation should be considered [34].
In addition, the effect of hydrodynamic memory has also been
neglected [35]. Furthermore, the distribution of particles can
be simulated when multiple particles are calculated simultane-
ously and individually (termed as simulation method in the
following). Moreover, for a large number of particles, in the
perspective of statistics, the distributions of Brownian particles
and potential well should satisfy the relationship based on
thermodynamic theory and governed by the Fokker—Planck
(E-P) equation as [30]

P, d [U'() kT 2P (. 1)
& d yodd

where k3 is the Boltzmann constant, 7" is ambient temperature,
7 is the Einstein-Stokes coefficient, U(x) represents the poten-
tial well, and P(x,#) is the probability density distribution
of particles. x and 7 represent spatial coordinate and time.
Obviously, P(x, #) in Eq. (1) can describe both the temporal
and spatial evolution characteristics of particle distributions

Pis, t)] + (1)
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Fig. 2. (a) The scheme of particle escape rates in a static symmetric
potential well. (b) The distribution of 300-nm particles in a static sym-
metric potential well. Theoretical predictions are shown in solid curve
and simulation results are shown in scattered points and histograms.
Particle motion in a static potential well with different depths is also
presented in Visualization 1. (c) Dependence of trapping time on the
depth of potential well in the static symmetric potential well for differ-
ent particle sizes and well widths. The y-axis intercepts represent the
characteristic value 7. (d) The potential wells calculated with focused
Gaussian beam by simulation (purple dashed line) and theoretical
(cerulean line) method. The intensity of Gaussian beam with waist
radius of 1 pm is also presented in red line for comparison.

(termed as theoretical method in the following). When particle
distributions tend to equilibrate, the diffusion current also
tends to vanish and steady distribution will be established.
In this case, supposing a Gaussian-shaped potential well and
escape model schemed in Fig. 2(a), a 3D potential well and
steady distributions by both simulation and theoretical meth-
ods have been shown in Fig. 2(b). Most of the particles are
concentrated at the bottom of the potential well. Therefore,
for a steady distribution obtained from the F-P equation, the
population of trapped particles is positively correlated to the
depth of potential well U(x).

According to Eq. (1), besides the temporal and spatial evo-
lution characteristics, diffusion current can also be obtained
and further an escape rate can be calculated under evolutionary
transients [24]. Intuitively, we have also proposed the mean first
trapping time (MFTT) 7, defined as the mean duration that a
particle can stay in a certain potential well, reciprocal of escape
rate. By the simulation method, MFTT of a single particle can
be calculated as the time moving from the depth to the barrier
of the potential well. When the theoretical method is consid-
ered, taking the potential distribution into the F-P equation, we
can have the probability distribution of trapped particles, the
escape rate, as well as the MFTT of particles:

1 v +0o0 56 /a S
— . X X , 2
1—2 i ’/_we dx be dx (2)

where y represents the coefficient of viscous resistance. 2 and &
represent the barrier and bottom of the potential well. After a
Taylor expansion, MFTT can be simplified by ignoring higher-
order terms above the third order [24]:
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where S is the stability factor mentioned in Section 1 and
represents the depth of the potential well. Obviously, An
Arrhenius relation exists between the trapping time and the
depth of the potential well.

When a Gaussian-shaped potential well is supposed, the
second derivative of U(x) can be described in the equation
precisely. Notably, in order to simplify the calculation, +36
has been defined as the barrier of the potential well because
the trapping time will show no evident difference when the
barrier extends beyond 3c. ¢ is the standard deviation of
the Gaussian potential well. Then, the MFTT for spherical di-
electric particles in a Gaussian symmetric potential well can be
expressed as

3

&

T:TOE’ (4)

where 7, represents the trapping time when the well depth is
1kpT and is called the characteristic value of trapping time for a
unit potential well. 7, satisfies the equation 7, = CDno?,
where C can be represented by exp[3.25 +1n37° / (4+/2k5 T)],
and D is particle diameter. Therefore, the escape rate of par-
ticles will decrease and trapping time becomes longer with
the increase of D. 5 represents the liquid viscosity, which is re-
lated to temperature. In addition, 7 used in our simulation has
neglected Faxén’s correction because the diameter of a capillary
is much larger than particle size [37]. o is the standard deviation
of the Gaussian potential well (representing the width). It is
worth noting that the actual parameter that affects the trapping
time is the curvature at the bottom and edge of the potential
well as in Eq. (3). However, in Gaussian potential wells, the
curvature is directly related to the width, so we will take width
as one of the important influencing factors in our later discus-
sions. According to Eq. (4), trapping time in a potential well
will be related to not only the depth, but also the width of the
potential well. Therefore, traditional descriptions such as S on
trapping stability will be not accurate enough because of the
neglect of width. In addition, MFTT is also proportional to
the size of trapped particles because greater optical gradient
force will be exerted on particles with larger diameters.
Moreover, to reveal the exponential relationship between
7 and S more intuitively, the logarithm of MFTT In 7 =
Intg + 8 -1In §-1 is introduced. Therefore, the exponential
relationship can be transformed into a quasi-linear relationship.
For the trapping of particles with diameters of 200, 300 nm,
and in a symmetric Gaussian potential well with standard de-
viations of 25, 100, 150 nm, we can directly calculate their
MFTT shown as the straight lines in Fig. 2(c) by Eq. (2), which
coincides well with the numerical simulation method repre-
sented as the scattered points. It also shows that there is a good
linear relationship between In 7 and Gaussian well depth when
the depth is much larger than 1437". In addition, we have also
calculated MFTT with Eq. (4) shown as the dashed lines in
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Fig. 2(c) and found that the results of trapping time will
be decreased a little because of the simplification of equations
during the derivations. Here, we have discussed the cases
when § < 10 because with the increase of S, MFT'T will be
much larger and the trapping tends to be stable. It is worth
noting that the intersections on the y axis give the characteristic
value 7, and these curves for different traps are parallelly
transformed. An animated visualization of particle motion in
a static potential well is also presented in a supporting video
(Visualization 1).

For the specific case when a Gaussian beam is incident and
the particle diameter satisfies D < 1/10, the electric field dis-
tribution is definite on the basis of Gaussian parameters because
particles can be approximated as dipoles, which will not influ-
ence the field. Therefore, the width and depth of the potential
well under a Gaussian beam can be calculated directly. We ap-
ply the form of a Gaussian beam in the formula of gradient
force F = ZaV|E|?, where a represents electric polarizability.
The field intensity of Gaussian beam E can be formulated
by E = E, exp(- %), where @, represents its waist radius and

r represents the radial coordinate for the Gaussian beam. Then,
its corresponding potential well can be calculated by integrating

F along the propagation direction as U = %|E0|2 exp(- i)—’g)

We can find that there is a linear relationship between the waist
of the beam and the waist of the potential well, i.e., 0 = 4@,
and 4, should be 0.5. Since the waist of the potential well &
can be preliminarily predicted by parameters of the Gaussian
beam, the trapping time for the unit potential well 7,
can be represented by C,Dnwj, where the constant C, =

k? exp[3.25 + In 372 /(4+/2k5 T)]. In addition, we can find
that the depth of the potential well can also be represented

by the beam power P and beam waist @, as S = k, L,
0 207

where £, = ﬁ.

As an example, assuming a Gaussian beam with waist radius
g of 1 pm and power of 200 mW, we compared the result of
potential wells obtained by simulation and theoretical methods
as shown in Fig. 2(d). Notably, the width for comparison here is
full width at half-maximum (FWHM) because of simple mark-
ings in the figure. For the simulation case, we have simulated
the force exerted on a 50-nm particle. Then, potential wells
have been calculated by integrating the force along propagation
direction and fitted to Gaussian curves shown as the purple
dashed line in Fig. 2(d). FWHM and § are calculated as
1.14 pm and 1.2 (o can be fitted as 0.48 pm) so that the trap-
ping time can be derived as 317.6 ms. For the theoretical case,
o is calculated as 0.5 pm according to the waist of the Gaussian
beam; S can be calculated as 1.0, which is close to the simu-
lation calculations. In addition, the trapping time can be de-
rived as 350.7 ms. The two cases match very well with
similar depths, widths, and further trapping times, which shows
the availability of our theoretical model.

3. TRAPPING TIME IN A DYNAMIC ASYMMETRIC
POTENTIAL WELL

Now we consider a more realistic scenario with external
disturbance. In an actual optical tweezer system, uniform ex-
ternal flow, capillary force, and laser-beam-induced thermal
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Fig. 3. (a) The calculated velocity field of a convective flow around
the trapping point, with maximum vertical velocity of 12 pm/s, which
can seriously disturb the trapping stabilitcy (COMSOL simulation with
the power of the Gaussian beam of 55 mW). The scheme of (b) force
and (c) potential wells in static and dynamic conditions. (d) The
scheme of particle escape rates in a dynamic asymmetric potential well.
(¢) The biased distribution of 300-nm particles in a tilted dynamic
potential well having a velocity of 200 pm/s. Theoretical predictions
are shown in solid curve and simulation results are shown in scattered
points or histograms. The red and blue dashed lines represent the bot-
tom of origin static and tilting potential well. Particle motion in flow-
skewed potential well with different flow velocities is presented in
Visualization 2. (f) Dependence of the effective depth and trapping
time on the relative velocity in the dynamic potential well. The dotted
lines show the effective depth with respect to the left y-axis. The solid
lines represent trapping time (MFTT) with respect to the right y-axis.

convection are unavoidable because the focused laser in a capil-
lary will generate a photothermal effect and further turbulence
in different directions will be produced. When the photo-
thermal effect caused by the laser-beam-induced thermal con-
vection is considered, both the particle dispersion and the
trapping stability should be corrected [28]. Here we apply
this correction using COMSOL Multiphysics simulations.
Figure 3(a) shows the relative motion of the aqueous medium
due to thermal convection generated by the focused trap-
ping beam. A self-excited fluid flow field (with velocity up
to 12 pm/s) is presented along both the vertical and lateral di-
rections around the focal spot so that potential wells with differ-
ent inclinations in orthogonal directions will be generated.
In such case of laser-beam-induced thermal convection, we
have neglected the change of temperature-dependent viscosity
due to the photothermal effect. In addition, even for the case of
laser-beam-induced dynamic flow with non-uniform distribu-
tion as shown in Fig. 3(a), the mean trapping time in different
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locations can also be calculated, since the flow distribution
around the tiny particle could be assumed uniform.

Considering a dynamic potential well, a more general sce-
nario, all the external effects or perturbation will be reflected in
the modification of the potential well. The relative uniform
motions between the fluid and the beam (with either a static
beam in a flow, or a moving/delivering beam in a static
medium) can be regarded as a component of the viscous
resistance force [38] calculated by 6zRnu shown as Fyy,, in
Fig. 3(b), where R represents the radius of particles. # denotes
the velocity of uniform external flow. The force curves will
move down so that trapping potential well integrated from op-
tical force will tilt on one side shown in Fig. 3(c). Assuming the
external flow is uniform, the so-called effective dynamic poten-
tial well satisfies U.g(x) = U(x) + yux, where x is the dis-
placement of the particle relative to the potential well, and
U (x) represents the originally static symmetric potential well.
When relative velocity and Brownian motion are considered,
we have simulated and visualized the 2D and 3D potential wells
and particle distribution with the relative velocity of 200 pm/s
shown in Figs. 3(d) and 3(e). The presence of relative-motion-
induced resistance force will tilt the originally balanced poten-
tial well through modifying the barrier heights in opposite
manners, i.e., of unbalanced barriers AU, and AU, at either
side as shown in Fig. 3(d). With the effective potential well
distribution, as shown in Fig. 3(e), we can also directly calculate
the particle distribution by using the F-P equation, similar to
that in the symmetric case. In addition, we notice that the lower
barrier side always has a higher particle density, hence a higher
chance of escape from the well. Since the potential well be-
comes asymmetric, the escape rate is unbalanced. The net
escape rate is the sum of the rates on cither side of the barrier,
and the MFTT could be expressed as 7 = 27,7, /(7; + 7,),
where 7; and 7, can be calculated using Eq. (3) with AU,
and AU,. In a weak trapping system, the depth of the poten-
tial well on the tilting side will be much smaller than the
other, i.e., AU < AU,, so we can approximately consider
AU = AU, and 7, - o0, while MFTT can be simplified
as 7=27;. We can define the effective stability factor
Seg = AU.g/kpT. Therefore, according to Eq. (4), trap-
ping time in a dynamic potential well can be calculated
directly by

i

(5)
We demonstrate the effective depth and MFTT in the dy-

namic potential well with a range of flow velocity, as shown in
Fig. 3(f). With the increasing relative velocity and particle size,
the viscous resistance force will be enhanced, and the effective
depth shown as dotted lines will be reduced, corresponding to
the left axis. On the right side, the MFTT exponentially de-
creases with respect to an increase of relative velocity. The theo-
retical results (solid curves) coincide well with simulated results
(scatter points). An animated visualization of particle motion in
a flow-skewed potential well with different flow velocities is
presented in a supporting video (Visualization = 2).
Interestingly, when the relative velocity increases to a critical
value (#,) to tilt the well to an extent, the trapping time will
decrease dramatically, which is corresponding to the condition

T = 21, .
eSeff
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that the barrier on this side disappears and the particle will
immediately escape. The critical velocities #, for 500 nm,
300 nm, and 200 nm particles are 239, 399, and 598 pm/s,
respectively. More specifically, the critical velocity is determined
by a balance between the gradient trapping force, which can be
influenced by the size of particles and power of the Gaussian
beam, and the external directional viscous resistance force.

A Gaussian beam is also considered in such a dynamic con-
dition. Moreover, the parameters of the dynamic potential well
o (effective standard deviation) and S.¢ (effective stability
factor) cannot be calculated by Gaussian parameters directly
because the potential well has deformed due to directional flow
velocity. Therefore, we have defined # and & as the solution
of Fye = 0, which represent the inflection point and the
depth of the dynamic potential well as shown in Figs. 3(b)
and 3(c) so that §; can be represented as AU g /kpT, where
AU g4 = Uyg(a) - Ug(b), which is formulable based on
Gaussian beams.

The width of the potential well will also influence the char-
acteristics of trapping. The potential well is integrated by the
force exerted on the particle, so a wider potential well will cor-
respond to a smaller force when the depth of potential wells is
consistent. Therefore, a very small Fy,,, caused by external flow
will make the dynamic potential well reach the critical velocity.
In a static potential well, dispersion time of particles will be-
come longer with the wider static potential well. Consequently,
the trapping characteristics will be different when the width
of the potential well is variant even with the same depth
as shown in Egs. (4) and (5). Then, we have analyzed
a three-dimensional ellipsoidal potential well formed by a
perpendicular focus point with different widths in the major
axis (longitudinal z direction) and the minor axis (transverse
x direction). Its trapping stability and critical velocity will differ.
Even though the depth of wells is the same for both directions,
the potential well along the major axis has a larger width with
a smaller gradient force, which is more likely to be affected
by flow-velocity-induced viscous force. It is worth noting that
scattering force F is also an important factor that can influ-
ence the trapping characteristics in the longitudinal z direction.
When only F is considered without external flow, we can cal-
culate the equilibrium position or MFTT by adding an addi-
tional item F in the Langevin equation. In the theoretical
model, F. can be viewed as a contributing factor of external
disturbances, which will generate external perturbance and tilt
the potential well. Here, we mainly want to study the influence
of uniform external flow on potential wells with different
widths. Figures 4(a) and 4(c) show the biasing of the trapping
force and the tilting of the potential well, respectively, due to
the flow velocity in the transverse direction, while Figs. 4(b)
and 4(d) are for the case of flow in longitudinal direction.
Since the trapping force has a lower peak in longitudinal direc-
tion, a slight biasing of the viscous force with 64 pm/s flow will
make the force peak become nearly zero as shown in Fig. 4(b).
As a result, the potential barrier on the left side becomes
nearly zero as shown in Fig. 4(d). Definitely, the particle will
escape from the longitudinal side. The dynamic motions of par-
ticles in this kind of ellipsoidal potential wells are shown in
Visualization 3.
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Fig. 4. The biasing of trapping force and the tilting of potential well
along different directions for an ellipsoidal focus point on both axes:
(a) the biasing of trapping force in transverse direction different flow
velocity; (b) the biasing of trapping force in longitudinal direction dif-
ferent flow velocity; (c) the tilting of potential well in transverse di-
rection; (d) the tilting of potential well in longitudinal direction.
The dynamic motions of particles in ellipsoidal potential wells are also
shown in Visualization 3.

Further, we have also explored the relationship of MFTT
calculated by the simulation method and Eq. (5) on the basis
of Fig. 4. As shown in Table 1, we can find that MFTT in a
dynamic potential well calculated by different methods keeps
consistency. MFT'T calculated by the theoretical method is
based on Eq. (4), so the trapping time is a little smaller than
that by the simulation method as shown in Fig. 2(c).
Furthermore, even a small flow velocity in longitudinal direc-
tion generated by laser-induced thermal convection, as small
as 12 pum/s in Fig. 3(a), is sufficient to introduce a significant
tilting of the potential well shown in Fig. 4, and dramatical
reduction of trapping time. In addition, when velocity is up
to 64 pum/s, the effective depth of the dynamic potential well
in longitudinal direction is near zero and the trapping time is
tiny. However, even with the same depth of the static potential
well, in transverse direction, AU can still maintain 5.2kz T
and MFTT will be more than 100 ms. Therefore, MFT'T will
also be seriously affected by the width of the potential well. We
have also shown errors between the two methods. Errors may
be increased when trapping time is very short because a very
tiny difference will lead to a large ratio error. Interestingly, when

a dynamic potential well is applied, the error becomes smaller,
because the error induced by a one-side infinite potential well
assumption partially compensates for the error of the theoretical
model shown in Fig. 2(c). Overall, when the trapping charac-
teristic value of an optical tweezer system is determined, one
can accurately predict particle capture events and trapping time
for a given set of system parameters. It largely extends the ap-
plications of the stability analysis based on trapping time.

4. TRAPPING TIME DISTRIBUTION

In the above analysis, all the calculations and theories are used
to obtain mean trapping time. On the other hand, the exper-
imental values are randomly distributed. Given the energy-de-
pendent nature of the system, it should satisfy a certain
statistical distribution [39]. Since the escape process is a homo-
geneous Poisson process and each escape event is a low prob-
ability random event, from the perspective of statistics the
probability density distribution of trapping times p(#) can
be expressed as a Poisson distribution p(z) = Cje ¢’
[23,40]. Since the sum of probability density distribution is
one and its expectation is the average value of trapping time,
it can be found that the coefficient C is equal to C,, which
characterizes the escape rate of particles. Therefore, the prob-
ability density distribution of trapping times satisfies

20) = 7, (6)

where 7(#) represents MFTT when the velocity of uniform ex-
ternal flow is #. Obviously, the intercept of the probability den-
sity distribution of trapping time on the y axis represents the
escape rate, that is, the reciprocal of MFTT, which is a function
of flow velocity in a dynamic potential well. With the increas-
ing flow velocity, MFTT will be reduced and the theoretical
distribution of trapping time will decrease faster.

5. EXPERIMENTAL VALIDATION

In order to study the characteristics of trapping time distribu-
tion experimentally, we have set up an optical tweezers system
operating simultaneously in a laminar-flow-supporting capil-
lary, as shown in Fig. 5(a). The system is designed to capture
the flowing particles with different relative velocities, particle
sizes, and beam power levels. A 976-nm laser is tightly focused
by a high numerical aperture (NA) objective to form a focus
spot, and a 40x objective is used for collecting light travelling
in the forward-scattering direction. A back-focal-plane inter-
ferometer (BFPI) with a quadrant photodiode device (QPD)
is used for monitoring the trap by recording the Brownian
motion trajectory of particles [41]. The trapping duration is
measured with millisecond precision.

Table 1. Comparison of MFTT Calculated by Simulation and Theoretical Method

Transverse x Direction

Longitudinal z Direction

Velocity (pm/s) 0 12
AU (kT) 10 8.9
MFTT by simulation method (s) 21.88 7.31
MFTT by theoretical method (s) 17.64 6.91
Error 19.4% 5.5%

64 0 12 64
5.2 10 7.0 0.2
0.16 186.47 8.91 0.011
0.15 158.73 8.42 0.017

6.3% 14.9% 5.5% 54.6%
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Fig. 5. Experimental setup and a schematic of trapping time mea-
surement. (a) Schematic of the experimental configuration. The source
wavelength is 976 nm. (b) Particle trapping in the microfluidic chan-
nel. The red line indicates the static potential well, the blue line is the
dynamic potential well, and the inset (right) shows the signal trace due
to transmitted light signal detected by the QPD. (c) Photograph of
the experimental system shown in (a). (d) Trapped data measured
on the rear focal plane interferometer; the red part is the stable trapped
part obtained by screening with 500-nm particles at 57 pm/s flow rate
and 35 mW optical power. (e), (f) Locally enlarged figures of (d). The
complete experimental signals and videos with and without directional
flow are shown in Visualization 4 and Visualization 5.

Figure 5(b) shows a Brownian motion trajectory (one of the
dimensions) recorded by the BFPI, with clear partitions of an
initially empty trap (signal stays at the center), particle entering
the trap with presence of a laminar flow (signal jumps quickly
from the upstream side to the downstream side of the trapping
beam), random walking at the bottom position of the skewed
potential well for a period (signal fluctuation at the bottom po-
sition), and final escaping (signal returns to the beam center).
Based on this technique (an experimental video of the signals
is presented in Visualization 4 and Visualization 5), we are able
to observe a weak trapping process and measure the trapping
duration. Figure 5(c) shows the actual experimental system.

Shown in Fig. 5(d) is the QPD electrical signal of trapping a
single 500-nm PS with 57-pm/s flow rate and 35-mW optical
power. Two specified enlarged figures of particle trapping signal
are also shown in Figs. 5(e) and 5(f). According to the figures,
the electrical signal on the QPD shows a great change in the
transmitted light signal when a single particle is trapped. The
sudden downward step is that the particle just enters the po-
tential well and then is trapped stably (at this time, the QPD
signal is displayed as rising). During the stable trapping time,
the signal remains at a height and floats with the Brownian
motion, and then is released after stable trapping for a period
of time in the flow rate environment.

The experimental results and theoretical distribution of
trapping time for particles with a diameter of 300 nm in
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Fig. 6. Comparison between experimental results and calculated
data. (a) Theoretical and experimental distributions of trapping
time in a Gaussian potential well with different relative velocities at
57 (red), 113 (blue), and 227 (green) pm/s; the particle diameter is
300 nm and the optical power is 15 mW. The distribution of trapping
time in logarithmic scale by varying the (b) relative velocity, (c) beam
power, and (d) particle diameter. In (c), the diameter of the particles is
300 nm and the relative velocity is 227 pm/s. In (c), the beam power
is 15 mW and the relative velocity is 227 pm/s.

the aforementioned Gaussian potential well are shown in
Fig. 6(a). To compare the theoretical and experimental results
more clearly, the distribution curves of trapping time are con-
verted to logarithmic scale and shown in Fig. 6(b). The slope
of the curves in Fig. 6(b) corresponds to the intercept of the
curves shown in Fig. 6(a). For three relative velocities 57,
113, and 227 pm/s, MFTTs 7 calculated by theory are 9.3 ms,
6.9 ms, and 5.4 ms, respectively, and MFTTs 7, measured in
our experiment are 10.6 £ 0.2 ms, 7.2+ 0.11 ms, and
5.3 £ 0.07 ms. When the relative velocity is 113 pm/s and
the beam power is 15 mW, MFTTs obtained by theory, sim-
ulation, and experiment of 300 nm PS are 6.9 ms, 6.8 ms, and
7.2 ms. Furthermore, in order to analyze the trapping time
more comprehensively, the experiments with different particle
diameters (200, 300, 500 nm) and trapping beam powers
(15, 25, 35 mW) have also been carried out. As seen from
Figs. 6(c) and 6(d), MFTT is proportional to particle size
and trapping beam power. In conclusion, the experimental re-
sults coincide well with the theoretical predictions of trapping
time. Our results demonstrated that the distribution of trap-
ping time satisfies Poisson distribution from the perspective
of statistics, and it is significantly affected by relative velocity,
particle size, and beam power.

6. CONCLUSION

In conclusion, we have proposed a comprehensive method
from a statistical point of view and quantified the trapping sta-
bility by trapping time and particle distribution. Specifically, we
have implemented the MFTT for describing particle dispersion
and transient trapping process in a potential well, especially for
weak trapping systems. For a practical optical tweezers system
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excited by Gaussian beams, we have demonstrated that when
the physical parameters (beam power, spot size, and liquid
properties) are determined, the width and depth of potential
wells can be calculated directly when the particle diameter is
less than 4/10. Besides the analysis of the above static symmet-
ric condition, we have also presented the dynamic potential
well model when relative motion is introduced by regarding
the effect of the relative velocity as a directional viscous resis-
tance force. Then, MFTT can be calculated directly by consid-
ering the parameter of flow velocity. The differences between
the method of theory and simulation have also been analyzed.
Furthermore, we have set up an optical tweezers system in a
microfluidic channel to capture the flowing particles and mea-
sure the trapping time at different relative velocities, particle
sizes, and beam powers to verify our model and the Poisson
distributions of MFTT. In total, our model quantitatively re-
veals the effects of fluidic flow velocity, particle size, and optical
power on trapping time, which will find applications where op-
tical trapping stability is challenged by external perturbations in
weak trapping conditions.

7. METHODS

A. Materials
The sample used in the trapping time measurement experiment
is polystyrene spheres. The trapping time of polystyrene spheres
with diameters of 200, 300, 500 nm in a water environment
was measured.

B. Thermal Simulation

The velocity field generated by thermal convection is simu-
lated by using a finite-element mode solver (COMSOL
Multiphysics) together with optimized mesh size and perfectly
matched layer. The parameters of the microfluidics channel and
the source are consistent with the experiment.

C. Electromagnetic Field and Force Field Simulation
The electromagnetic field is solved by using a finite difference
time domain solver (Lumerical FDTD). In the simulation, we
simulated the Gaussian beam and set the microfluidics channel
at its waist position. On the other hand, the force of PS particles
is simulated and calculated by the Maxwell stress tensor (MST)
method in FDTD software. The parameters of source and PS
particles are consistent with the experiment.

D. Particle Motion Simulation

The motion of the potential well and particles is solved by
MATLAB. Through the iterative algorithm based on the Euler
method, we solved the motion equations and calculated the
trapping time of several groups of PS particles, each group
of 10,000 particles, and the time interval is one-tenth of the
characteristic time of particles because it can strike a balance
between the accuracy and the efficiency of the simulation.
MFTT is obtained by the average value of each group, and
the distribution of trapping time is represented by the histo-
gram of simulated results.
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