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Intensity-preserving self-similar beams
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Non-diffracting beams, propagating with unchanged trans-
verse profiles and intensity, have been extensively studied in
past decades. More recently, self-similar beams with scaling
transverse profiles during propagation were proposed as a
generalization of non-diffracting beams. Here, we present a
type of beam that can be regarded as an intermediate mode
between traditional self-similar beams and non-diffracting
beams. During propagation, such beams feature a strict self-
similar transverse profile and the intensity remains unchanged.
Thus, we name these beams the “perfect self-similar beams”.
Our work reveals a class of previously unnoticed beam modes
that hold both main characteristics of self-similar beams and
non-diffracting beams, which conceptually expands the study
of free-space beams with special propagation properties. ©

2025 Optica Publishing Group under the terms of the Optica Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.542980

As a long-known phenomenon, optical waves are always affected
by diffraction, which entails beams, constituted of waves travelling
in different directions, gradually broadening upon propagation. To
satisfy the requirement of anti-diffraction characteristics of beams
in the fields of free space communications, image forming, optical
lithography, electromagnetic tweezers, etc., the development of
techniques capable of reducing this phenomenon is of crucial
importance. In 1987, Durnin proposed a class of monochromatic
solutions to the Helmholtz equation, i.e., the Bessel beams, which
feature an invariant transverse intensity profile while propagating
forward [1,2]. The Bessel beams can be regarded as the superpo-
sition of a set of plane waves propagating in a cone, which have
attracted extensive investigations and been employed for vari-
ous applications [3–8]. By introducing the concept of Airy wave
packets in quantum mechanics into optics, Airy beams, featuring
a non-diffracting profile and parabolic trajectory, were proposed
[9,10]. It has been demonstrated that Airy beams satisfy the parax-
ial Helmholtz equation and have special propagation properties

such as self-acceleration and self-healing [11–14]. Other non-
diffracting beams with different spatial structures, like Mathieu
beams and parabolic beams, were also reported [15,16].

In addition, the self-similar evolution in physical systems is an
ongoing research theme, especially in the area of nonlinear optics
[17]. Back in 1992, some researchers found that the evolution of
stimulated Raman scattering at long distances is dominated by
the self-similar solutions, which depend on the combination x t
[18]. For the spatial case, a class of exact self-similar waves sup-
ported by inhomogeneous gain media was proposed in 2007 [19],
of which the transverse profile retained a gradually narrowing
parabolic shape even as the intensity continued to be amplified.
More recently, by introducing coordinate transformation, self-
similar waves in a linear system were proposed as the generalization
of non-diffracting beams. Under the circular parabolic coordinate
system, a beam mode called parabolic scaling Bessel beams can be
obtained, of which the transverse profile scales parabolically during
propagation [20]. Furthermore, by systematically studying the
self-similar solutions of the paraxial Helmholtz equation, another
two classes of self-similar beams whose scaling factors are linear
and hyperbolic ellipses functions were proposed successfully [21].
Under tunable stretching transformations based on the Fresnel
integral, the self-similar arbitrary-order Bessel-like beams can be
obtained [22]. A more direct method for constructing arbitrary
self-similar Bessel beams was proposed by using the transverse and
longitudinal mapping principle of Bessel beams [23].

Unlike non-diffracting beams, these self-similar beams cannot
preserve their intensities during propagation but vary along with
the increase of the propagation distance. In fact, the self-similarity
without intensity-preserving is not a surprising property of optical
beams. As we know, Gaussian beams, the most commonly used
eigenmodes of optical laser resonators, also have stable propagation
with self-similarity. When propagating in free space, the beam
waist of Gaussian beams stretches along the optical axis, leading to
the scaling of the transverse profile and the decrease of the intensity
along the optical axis [24]. As a generalization of non-diffracting
beams, self-similar beams differ from non-diffracting beams in
both the aspects of transverse profile and intensity.
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Fig. 1. Graphical representation of the relation of non-diffracting
beams, self-similar beams, and perfect self-similar beams. The circle in the
center denotes the non-diffracting beams with the unchanged transverse
profile and intensity. The outer circle denotes the self-similar beams, of
which the transverse profile and intensity both are scaling. The perfect
self-similar beams are presented by the ellipse, whose transverse profile
performs scaling while the intensity remains unchanged.

So, is there an intermediate beam mode whose transverse
profile performs a scaling operation while the intensity remains
unchanged during the propagation? Here, we present the discovery
of intensity-preserving self-similar beams, which are exact solu-
tions to the paraxial Helmholtz equation. The transverse profile
of these beams features strict self-similarity along the propagating
direction, while the intensity remains unchanged, which is signifi-
cantly different from common self-similar beams. Thus we would
like to call these beams the “perfect self-similar beams”. In Fig. 1
we clarify the relation between non-diffracting beams, self-similar
beams, and the newly presented perfect self-similar beams. We also
analyze their properties when propagating in free space. Finally, we
compare the perfect self-similar beams with the other two beams
mentioned above.

We start with the two-dimensional (2D) case, considering a
monochromatic light field propagating along the z axis in free
space with the wave vector k, and the complex amplitude can be
represented by U(x , z)= u(x , z) exp(ikz). By taking u into the
2D Helmholtz equation and using the paraxial approximation, we
get the paraxial Helmholtz equation

∂u
∂z
−

i
2k
∂2u
∂x 2
= 0. (1)

The variable substitution from x to x 2/z plays a key role in
the deduction of the parabolic scaling Bessel beams [20], while
the intensity profile of the resulted beams is still a function of the
two variables, i.e., x 2/z and z, which leads to the decrease of the
intensity along the propagating direction. Thus, in this letter we
further consider if there is a beam mode whose transverse intensity
profile depends only on x 2/z. By introducing the intermediate
variable ξ = x 2/z, and assuming u(x , z)= A(ξ), Eq. (1) becomes
an ordinary differential equation (i + kξ)A′(ξ)+ 2iξ A′′(ξ)= 0.
Solving the equation, we get a beam mode described by the
expression

u(x , z)= erf

(√
−

ik
2z

x

)
, (2)

where erf(x )= (2
√
π)
∫ x

0 e−η
2
dη is the Gaussian error func-

tion. It can be seen that Eq. (2) is the unique solution with the

Fig. 2. A schematic of the transverse intensity profiles of (a) non-
diffracting beams (in black), (b) self-similar beams (in red), and (c) perfect
self-similar beams (in blue), propagating from an arbitrary starting
position z0 to z1, with a common starting state.

form u(x , z)= A(x 2/z) in the 2D case (the constant solution is
ignored, which stands for the trivial solution of plane waves). The
solution we proposed here has no extra parameter involved with
z outside the erf function, which sets it distinctly apart from the
previously reported self-similar beams. According to this charac-
teristic, when propagating from an arbitrary starting position z0 to
z1, the transverse intensity profile can be described in principle by
the function I1(x )= I0(ax ), where x is the transverse coordinate,
I0(x ) stands for the starting state of position z0, and the parameter
a therein denotes the scaling factor involved with propagation
distance. For self-similar beams, the transverse intensity changes
depending on I1(x )=C I0(ax ), of which the parameter C is the
intensity scaling factor involved with propagation distance. As for
non-diffracting beams, the transverse intensity profile remains
unchanged during the whole propagation process and can be
described by I1(x )= I0(x ). For a better clarification, Fig. 2 sche-
matically depicts the transverse intensity profiles of the three beams
transmitting from z0, with a common starting state I0(x ), to the
position of z1.

Comparing the propagation characteristics of the three beams,
we can find that the beam mode we present here has a self-similar
transverse profile, while the intensity remains unchanged.
With the properties of this beam mainly determined by the
erf function, we call this beam the “erf beam”. Obviously, the
erf beam preserves its amplitude along curves x 2/z= const,
and sustains its transverse structure upon propagation, chang-
ing only in scale. From Eq. (2), the relation for the intensity
distribution is calculated as Î (x , z)∝ |erf(

√
−ik/2zx )|2.

In Fig. 3(a) we plot the intensity of the beam in the x z plane
with the wavelength of λ= 1300 nm (this wavelength, though
arbitrary, is fixed throughout the present letter) and the trans-
verse intensity profiles at z= 100 mm, z= 50 mm, and
z= 25 mm are shown in Figs. 3(b), 3(c), and 3(d), respec-
tively (for codes used for the pictures, see Supplement 1,
as well as those for the following pictures). It can be seen that the
three transverse intensity profiles at different distances are the same
except for a transverse expanding operation, scaling by the square
root of the propagation distance, which also can be predicted by
the analytical expression of the erf beam. The expression depends
only on the combination x 2/z, forcing the transverse profile to
scale according to the parameter 1/

√
z and enabling the intensity

to remain unchanged during propagation. This further illustrates
that the erf beam is both intensity-preserving and self-similar at the
same time.

The erf beam has an infinitely extended transverse width on any
transmission cross section, which holds infinite energy. In practice,
when generating beam modes with infinite energy, the apodization

https://doi.org/10.6084/m9.figshare.28323422
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Fig. 3. (a) Transverse intensity profiles of the propagating erf
beam. (b)–(d) Comparison of the transverse intensity profiles at
(b) z= 100 mm, (c) z= 50 mm, and (d) z= 25 mm. In the profiles,
we can find that two points, namely, (x1, z1) and (x2, z2), will have
the exact same field distribution if their propagation distance z and the
transverse position x satisfy x1

2/z1 = x2
2/z2. Thus, the erf beam has

isointensity curves in the form of a series of parabolas with the same vertex.

Fig. 4. Transverse intensity distribution patterns of a 3D erf beam at
(a) z= 25 mm and (b) z= 100 mm. The intensity distribution patterns
are the same in the two distances except for an expansion, which presents
the intensity-preserving and self-similar properties of the beam.

method is often used [9,10]. Therefore, the total energy of the
resulted beams is finite while the desirable features can survive
over extended distances, and the law of conservation of energy is
satisfied during propagation. From the transverse profiles, it can be
seen that with the expansion of the profile, the number of the lobes
in a certain horizontal distance decreases simultaneously, which
means the expansion does not lead to the increasing of the total
power but only the redistribution of it.

Similar to the construction method of the three-dimensional
(3D) Airy beam, these results can be readily generalized in three
dimensions; thus we have the 3D erf beam written as

u(x , y , z)= erf

(√
−

ik
2z

x

)
erf

(√
−

ik
2z

y

)
, (3)

which is also a solution to the paraxial Helmholtz equation.
Figure 4 shows the transverse intensity profiles at the distances of
z= 25 mm and z= 100 mm. Obviously, the transverse profile
remains unchanged but performs a scaling operation, together
with the analytical expression, which exactly illustrates the

intensity-preserving and self-similar characteristics of the 3D
erf beam.

The obtained 3D erf beam is just a particular solution in
three dimensions; the general solution needs further discus-
sion. To demonstrate this possibility, we consider a rotationally
symmetric optical field with a spiral phase exp(inϕ) in free
space, of which n is the topological charge, and the ampli-
tude remains unchanged along the set of parabolic curves
ρ2/z= const. Thus, the complex amplitude can be described by
U(ρ, ϕ, z)= A(ρ2/z) exp(ikz) exp(inϕ). Taking u(ρ, ϕ, z)=
A(ρ2/z) exp(inϕ) and inserting u into the 3D Helmholtz equa-
tion, under the paraxial approximation, we have the 3D paraxial
Helmholtz equation in cylindrical coordinates:

∂u
∂z
−

i
2k

(
∂2u
∂ρ2
+

1

ρ

∂u
∂ρ
+

1

ρ2

∂2u
∂ϕ2

)
= 0. (4)

Here we focus on the case of beams with n = 1. By introducing
the intermediate variable ξ = ρ2/z, Eq. (4) becomes an ordinary
differential equation: A(ξ)+ (2ikξ 2

− 4ξ)A′(ξ)− 4ξ 2 A′′(ξ)=
0. Solving the equation, the beam can be found for this case in an
analytical form:

u(ρ, ϕ, z)=

√
kρ2

z
exp

(
ikρ2

4z

) {
C1

[
−J0

(
kρ2

4z

)
+ i J1

(
kρ2

4z

)]

+C2

[
K 0

(
−

ikρ2

4z

)
− K 1

(
ikρ2

4z

)]}
exp (iϕ),

(5)

where C1 and C2 are constant, Jn denotes nth-order Bessel func-
tion, and Kn stands for n th-order Hankel function of imaginary
argument (n = 0, 1). We see that Hankel functions K0 and
K1 diverge at the origin, which should be discarded. Taking
C1 =

√
π/8, we can express Eq. (5) in the simpler form as

u(ρ, ϕ, z)=

√
πkρ2

8z
exp

(
ikρ2

4z

) [
−J0

(
kρ2

4z

)
+ i J1

(
kρ2

4z

)]
× exp(iϕ).

(6)

Obviously, this field results from the summation of two Bessel-
type beams. From Eq. (6) it can be seen that the optical field will
preserve its spatial structure because the function u(ρ, ϕ, z)
therein depends only on the combination of variables ρ2/z, while
the Bessel beams match the function Jn(αρ) and strictly maintain
the transverse profile in any plane orthogonal to the propagating
direction. Utilizing asymptotic expansions of Bessel functions J0

and J1, it can be proved that when z→ 0, the optical field deter-
mined by Eq. (6) turns into a uniform-intensity field exp(iϕ),
which conforms to the complex transmittance of the spiral phase
plate with the first-order phase singularity (n = 1). Thus, the
optical field described by Eq. (6) can be easily formed behind a
first-order spiral phase plate illuminated by a plane wave, which has
been displayed by previous publications, wherein the cases of dif-
ferent topological charge indices with similar analytical expressions
are also concerned [25,26]. Here we focus on the characteristics of
the beam. Figure 5 shows two transverse intensity profiles at the
distances of z= 25 mm [Fig. 5(a)] and z= 100 mm [Fig. 5(c)]
and their corresponding intensity distribution patterns [Figs. 5(b)
and 5(d)]. It can be seen that the two transverse profiles overlap
completely after stretching the horizontal coordinate of Fig. 5(a).
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Fig. 5. Transverse intensity profiles of the perfect self-similar beam
(3D case in cylindrical coordinates) are strictly similar at the distances of
(a) z= 25 mm and (c) z= 100 mm and the intensity remains unchanged.
(b), (d) Their corresponding intensity distribution patterns, which also
show the intensity-preserving and self-similar properties of the beam.

Similarly, any two points that satisfy ρ1
2/z1 = ρ2

2/z2, namely, on
the same paraboloid ρ2/z=C , will have the same field distribu-
tion. And the intensity does not change during propagation too.
From the intensity profiles and its analytical expression, we confirm
that this beam belongs to the class of perfect self-similar beams.

By now, we have obtained several perfect self-similar beams in
both two and three dimensions. It is worth comparing comprehen-
sively the features of the perfect self-similar beams with the other
two types of beams.

We first compare the perfect self-similar beams with the non-
diffracting beams to explain the self-similar property of the former.
These two kinds of beams both maintain their intensity during
the propagation. The difference is that the transverse intensity
profiles are directly congruent for the Bessel beams and other
non-diffracting beams, while congruent only after certain scaling
operation for the perfect self-similar beams. We also find that
every non-diffracting beam has a series of isointensity curves. The
isointensity curves are a series of parallel straight lines for the Bessel
beams and other non-diffracting beams, a series of parallel parabo-
las for the Airy beams, and a series of parabolas with the same vertex
for the perfect self-similar beams. In short, when comparing with
these non-diffracting beams, what makes the perfect self-similar
beams special is that while maintaining the unchanged intensity
during propagation, they get a gradually broadening transverse
profile, which is the so-called self-similarity.

As for self-similar beams, the most significant difference
between these beams and the perfect self-similar beams is that
the beam shape broadens during the propagation process, and
the intensity is decreased. While the perfect self-similar beams we
proposed in this letter broaden in the propagation process, the
intensity remains unchanged. The same goes for the parabolic
self-similar beams and other self-similar beams with different
scaling factors, presenting a decreasing intensity, which differen-
tiates them from the beams we proposed, and thus we term our
intensity-preserving self-similar beams as “perfect self-similar”.

In conclusion, by solving the paraxial Helmholtz equation,
we demonstrate a class of beams whose transverse profile scales
parabolically during propagation while the intensity can be main-
tained, and the analytical expressions are obtained both in two and
three dimensions. These beams can be regarded as the intermediate
mode between non-diffracting beams and self-similar beams. Our
results conceptually expand special beam modes in free space and
would be of benefit for exploring applications in free space com-
munications, optical imaging, optical micromanipulation, etc.
And it may also be extended to acoustics, fluids, or other relevant
systems.
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