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technology
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Abstract
In recent years, the integration of graphene and related two-dimensional (2D) materials in optical fibers have
stimulated significant advances in all-fiber photonics and optoelectronics. The conventional passive silica fiber devices
with 2D materials are empowered for enhancing light-matter interactions and are applied for manipulating light
beams in respect of their polarization, phase, intensity and frequency, and even realizing the active photo-electric
conversion and electro-optic modulation, which paves a new route to the integrated multifunctional all-fiber
optoelectronic system. This article reviews the fast-progress field of hybrid 2D-materials-optical-fiber for the opto-
electro-mechanical devices. The challenges and opportunities in this field for future development are discussed.

Introduction
Low-loss silica optical fibers, semiconductor lasers and

erbium-doped fiber amplifiers lay the foundations of the
modern optical communications. In addition to primarily
transporting the lightwave, silica optical fibers have found
broad applications in the distributed optical sensing1,2,
endoscope imaging3–5, optical trapping6,7, fiber lasers8,9

and nonlinear optics10. With the development of materi-
als science and manufacture technology, the conventional
homogeneous doped core and pure cladding structures in
a silica fiber have evolved with a new paradigm shift by
merging the multi-structures and multi-materials. This
emerging trends in optical fiber aim to break the funda-
mental limit by a single structure and material, and extend
their photonic and optoelectronic applications.
In 1978, Hill et al.11 demonstrated one-dimensional

fiber Bragg gratings (FBGs) employing the photo-
sensitivity in germania-doped fiber. Later, the FBGs have

found broad applications in optical communications and
sensor systems11,12, and have stimulated many other in-
fiber grating structures13,14. In the same year, Yeh et al.15

proposed the Bragg fiber in which concentric rings of
alternating high- and low-refractive index are arranged, to
realize lossless propagation in a core of lower refractive
index than that of the cladding. From the late 20-century
to the dawn of the 21-century, it witnessed booming
development of optical fiber technology. Russell et al.16,17

successfully combined the concept of two-dimensional
(2D) photonic bandgap with the fiber drawing technology,
and fabricated the photonic crystal fiber (PCF), which
opens a new horizon for in-fiber manipulating optical
wavelength, modes, dispersions, polarizations, and non-
linearities18. Tong and Knight et al.19,20 minimized the
width of waveguides and demonstrated the subwavelength
silica fiber for low-loss optical waveguiding. The optical
microfiber/nanofibers possess many intriguing proper-
ties21, such as strong field confinement, large evanescent
fields and great configurability, and they have been widely
used as micro- or nano-scale probes in physical, chemical,
biological and materials research21–25. Fink et al.26,27

focused on integrating multi-materials with disparate
electrical, optical, mechanical and thermal properties into
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a single fiber, with an ambitious goal of realizing multi-
functional fiber devices that see, hear, sense and commu-
nicate26,28,29. The multimaterial fibers are an important
milestone in the development of fiber devices, while it is
challenging to seamlessly connect with the universal silica
optical fiber networks due to the mode-field mismatch and
fiber splicing difficulties.
During this period, the Dirac fermionic graphene in

condensed matter physics was emerging rapidly since the
seminal work of Geim and Novoselov et al.30,31, and it
demonstrated many supreme properties such as
carrier mobility, thermal conductivity, light absorption,
mechanical stiffness/strength and chemical functionali-
zation32–34. The rise of graphene and related 2D materials
has brought profound impact on nearly every field related
to electronics, photonics, chemistry, energy and biol-
ogy32–37. With benefit of hindsight, the 2D materials with
salient optoelectronic and mechanical properties are fully
incorporated complementarily to the passive silica optical
fibers benefiting from their flexibility, configurability and
versatility, as shown in Fig. 1. The main advances enabled
by 2D materials are post-processing on the conventional
passive silica fiber structures to realize light emission,
modulation, switching and detection24,32,38–43, which
paves the way to all-fiber multifunction-integrated
optoelectronics26,29,38. The pioneering work of the fiber-
integration-2D-materials, such as ultrafast fiber laser44,45,

graphene polarizer46,47, fiber-optic sensor48–54 and all-
optical modulator55–58 have been experimentally realized.
Although there is a plethora of comprehensive review
papers on 2D materials optoelectronics32,36,38–40,59, none
of them provide the full pictures and prospects of optical
fiber integration. Therefore, we aim to review the fast-
growing research field of hybrid fiber-2D-materials for the
opto-electro-mechanical technology. In this article, we
first summarize the basic properties of fused silica and
three typical 2D materials i.e., graphene, transition metal
dichalcogenides (TMDC), and black phosphorus (BP),
and particular emphasis is put on the tunability of their
linear and nonlinear optical properties. Next, we analyze
four kinds of fiber structures integrated with 2D materials
(Fig. 1), each of which has their own uniqueness. Then we
discuss the all-fiber photonic and optoelectronic appli-
cations, i.e. fiber polarizers, light emitting devices, optical
modulators, photodetectors, optical sensors and nonlinear
optics. Finally, we discuss the challenges and opportu-
nities in the optical-fiber-2D-materials towards the prac-
tical applications, and provide our vision for the future
perspectives in this field.

Silica and 2D materials properties
Silica
Commercialized standard optical fiber is made of fused

silica for their intrinsic ultralow optical loss in the visible
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Fig. 1 Schematic of 2D materials integration to optical fiber platform. Left box illustrates the crystal structures of multilayered graphene,
transition metal dichalcogenides (TMDC), black phosphorus (BP) and their heterojunctions. Right box lists typical optical and optoelectronic
properties of 2D materials. 2D materials are flexibly assembled in microstructured fiber, fiber endface, D-shaped fiber and optical microfiber for
versatile applications
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and near infrared band (Fig. 2a). The first low-loss optical
fiber was invented in 1970 at the Corning thanks to the
seminal work of Kao and Hockham et al.60 who raised the
idea that the attenuation in optical fibers caused by
impurities could be removed. In current optical fibers,
three main loss contributions still exist, i.e., Rayleigh
scattering at short wavelength due to the inhomogeneous
glass, the infrared lattice vibration and the residual OH
absorption, and the state-of-the-art optical fiber demon-
strates propagating loss of ~0.15 dB/km61,62. Under the
regime of linear optics, the isotropic silica has a moderate
refractive index of ~1.45, and the dispersion (Fig. 2a) is
well approximated by the Sellmeier formula, which is
widely used for characterizing optical materials,

nðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X
j

ajλ
2

λ2 � bj

vuut ð1Þ

where λ is the light wavelength, aj and bj are Sellmeier
coefficients. As for the nonlinear optics, the primary term
of isotropic silica is third-order nonlinearity (χ(3)) with the
moderate value of ~10−20 m2/W. Due to the ultralong
light-matter interaction in silica fiber, efficient nonlinear
optics have been revealed, such as Kerr effect, four-wave
mixing, stimulated Raman and Brillouin scattering10.
While under the electric-dipolar approximation the bulk
second-order nonlinearity (χ(2)) in fused silica is missing,

researches show that the structural loss of inversion
symmetry at the surface/interface allows second harmonic
generation (SHG) with the surface χ(2) of the order
~10−21 m2/V63. Further, the electric-quadrupole and
magnetic-dipole response also contribute to the SHG
response64. As for mechanics, the Young’s modulus of
bulk silica glass is approximately 70 GPa. Nevertheless,
the measured strength is as low as 0.2 GPa because of the
surface imperfections65. Intriguingly, Brambilla et al.65

recorded the maximum strength of ~26 GPa in silica
nanowires with significantly reduced defects.

2D materials
2D materials are a class of crystals whose thickness vary

from one-atomic layer to tens of nanometers, and most of
them are formed by in-plane covalent bonds and out-of-
plane Van der Waals force66. The simultaneously high
stiffness and elasticity/flexibility in 2D materials enables
their adaptation into various photonic structures, enhan-
cing the light-matter interactions. Since the first discovery
of graphene, the burgeoning development of materials
synthesis has significantly expanded the library of 2D
material from the elements to compounds67–70, and more
than 600 stable 2D layered materials are predicted71. In
contrast, only a few mainstay 2D materials are successfully
integrated to the optical fiber platform, such as graphene,
TMDCs and BP. These 2D materials spans the electronic
bandgap of 0–2 eV, which corresponds to the optical

n

0

3.0

6.0

0.3 1.10.7 1.5

k
0

2.5

5.0
c

n

0

2.0

0.6 0.7 0.8

k

0

2.0

4.0d

a

Lo
ss

 (
dB

 k
m

)

1.35

1.40

1.45

0.6 1.41.0 1.8

Wavelength (μm) Wavelength (μm)

Wavelength (μm)Wavelength (μm)

Rayleigth
scattering

OH
absorption

Infrared 
absorption

0.2

n

1.6

2.4

3.2
b

k

1.6

2.4

3.2

0.6 1.41.0 1.8

n 1.0

5.0

A exciton

4.0

nx

ny

x

z

B exciton kx

ky
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spectral response from the terahertz to visible band, and is
sufficient for optical fiber photonics and optoelectronics.
There is still huge potential to discover in fiber integration
with other novel 2D materials.

Graphene
As the first discovered 2D materials, the atomic-thin

graphene with honeycomb structures has been extensively
studied for more than 15 years32–36,38, and it still shows
strong vitality especially in condensed matter physics so
far, for example, the magic-twist graphene layers for
superconductor and correlated insulator72,73. Con-
ceptually, graphene can be considered as a mother
material for fullerene, nanotubes and graphite74, while the
dimensionality defines their drastic difference. Graphene
has an ambipolar electric field effect with carrier mobility
reach 106 cm2 V−1 s−1 due to its massless Dirac fer-
mions75, which is 2-3 orders of magnitude higher than
that of the semiconductor silicon, and have found appli-
cations in high-frequency transistors76,77. The high elec-
tron velocity and linear energy-momentum dispersion
contribute to graphene’s intriguing optical properties, for
example broadband light absorption (Fig. 2b). Generally,
the linear optical response of graphene can be determined
by a surface optical conductivity from Kubo formula, and
under the assumption KBT<<jμcj, the optical conductivity
can be analytically derived as78,79

σðωÞ ¼ � ie2μc
π�h2ðω � iτ�1Þ �

ie2

4π�h
ln

2 μc
�� ��� ðω � iτ�1Þ�h

2 μc
�� ��þ ðω � iτ�1Þ�h

 !
ð2Þ

where kB is the Boltzmann’s constant, e is the electron
charge, ℏ is the reduced Planck’s constant, τ is the
relaxation time. The first and second part of Eq. (2) are
contributed by the graphene intraband and interband
transition, respectively. In the visible and near-infrared
spectra with ℏω > 2|μc | , the interband transition
dominates, and the graphene’s optical conductivity is
~e2/4ℏ, which directly determines the universal light
absorption of ~2.3% per layer80. Moreover, the light
absorption can be simply tuned by the electric, optical and
magnetic field81–84, strain gauge85,86, and even the
molecule adsorption87,88. Since the second-order non-
linearity is forbidden in centrosymmetric graphene under
the electric-dipole approximation, third-order nonlinear-
ity is the dominant effect with χ(3) ~ 10−17 m2/W44,45,89–

91. In particular, the broadband, low-threshold-power and
ultrafast-response saturable absorption of graphene has
attracted great research interest in pulsed fiber laser and
all-optical modulation42,43,92,93. Manipulating the non-
linear optical absorption is also realized by engineering
the Fermi-Dirac distribution94–96. Recent experiments
systematically reveal the tunable enhancement of third
harmonic and four-wave mixing by the Dirac conical
bandstructure97,98. Note that there is relentless effort in

opening graphene’s second-order nonlinearity through
symmetry breaking, for example, the electric field induced
nonlinear effects99. High harmonic generation in gra-
phene is observed and enhanced by elliptically polarized
light excitation, and this finding sheds light on the
possibility of strong field and ultrafast nonlinear dynamics
in massless Dirac fermionic materials100,101.
The in-plane strong covalent bonds in graphene

determine its thermal stability and mechanical strength.
Thermally, monolayer graphene is stable in oxygen
atmosphere withstanding high temperature of ~300 °C,
and the oxidation temperature is up to 500 °C for multi-
layers102. Mechanically, suspended defect-free graphene
shows Young’s modulus of ~1.0 TPa and intrinsic
strength of 130 GPa103, and is highly flexible with a failure
strain up to 11%104. The supreme mechanical properties
of graphene enable the excellent conformal coating to the
optical fiber system.

TMDCs
TMDCs have a large group of materials with the formula

MX2, where M is a transition metal element from group IV-
VI (such as Mo, W, Ti, Nb, Zr) and X is a chalcogen (such as
S, Se, Te), and there are many comprehensive reviews on
TMDCs59,105–107. Here we focus on the most studied MoS2
(or WS2) for its robustness in monolayer limit at room
temperature, which benefits for practical optoelectronic
devices. Layered MoS2 evolves a transition from indirect
bandgap (bulk, 1.2 eV) to direct bandgap (monolayer, 1.9 eV)
semiconductor due to the lateral quantum confinement
effect, and the measured quantum yield of photo-
luminescence in monolayer crystal is 104 higher than that of
the bulk crystal108,109. The enhanced Coulomb interaction
due to the low-dimensional effects in TMDCs forms the
tightly bound excitons and trions110–112, and they are tun-
able by electric field and strain gauge113,114. Thus, the optical
dielectric function of monolayer MoS2 is strongly correlated
to the exciton energy115,116 in the visible spectra, as shown in
Fig. 2c. Moreover, the spin-orbit coupling together with the
time-reversal symmetry in monolayer MoS2 leads to valley-
contrasting optical dichroism117–119, which demonstrates
the viability of optical valley control and valleytronics, and
finds applications in photonic crystals, plasmonics and
waveguides120–124. For nonlinear optics, the measured sur-
face second-order nonlinearity in monolayer MoS2 is on the
order of 10−17–10−19 m2/V125–127, and the large discrepancy
is probably due to the experiment configurations and sample
qualities. Researches show that the χ(2) nonlinear optics in
MoS2 is highly dependent on the layer number125–127,
stacking order128,129, pump wavelength126,130, edge state131,
and even the electrostatic doping132. The third-harmonic
nonlinear susceptibilities of MoS2 is comparable to that of
conventional semiconductors under resonant conditions
(~10-17 m2/W)133. It is revealed that the few-layer MoS2
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exhibits significant saturable absorption effects134,135, and
that monolayer has a strong two photon absorption
coefficient as high as 7.6 × 10−8 m/W, which is three
orders of magnitude larger than that of conventional
semiconductors136.
Mechanically, suspended monolayer MoS2 exhibits

Young’s modulus of 270 GPa and intrinsic strength of ~23
GPa137. While the 2D TMDCs can exist in multiple
crystal structures with distinct electrical properties, all
Mo- and W-based TMDCs except WTe2 are stable in
trigonal prismatic phase (hexagonal symmetry) under
ambient conditions105,138. In addition, the strong elec-
tromechanical coupling in TMDCs have enabled struc-
tural phase switching by a variety of stimuli, such as
chemical doping139, mechanical deformation140,141 and
electrostatic gating142,143. The dynamic control of struc-
tural phase transition in TMDCs may find applications in
phase-change electronic and photonic devices. Recently,
the valley-mechanical coupling in monolayer MoS2 is
experimentally realized, and it is controlled by pump
light, magnetic field gradient and temperature, which
paves the way to valley-actuated devices and hybrid valley
quantum systems144.

Black phosphorus
Black phosphorus attracts regenerated interest as ani-

sotropic layered materials for electronics and optoelec-
tronics, since it fills the energy gap between semi-
metallic graphene and semiconducting TMDCs (1-2 eV)
with high carrier mobility145–148, which is suitable for
infrared optoelectronics. Due to the interlayer coupling,
the bandgap of BP highly depends on the layer numbers
from 0.3 eV (bulk) to 1.7 eV (monolayer) with a power
law Eopt= 1.486/N0.686+ 0.295, where Eopt is the optical
gap in unit of eV, and N is the layer number149–153.
Intriguingly, BP always exhibits direct bandgap for var-
ious layers, and it is promising for efficient infrared light
detection154–156 and emission149–151,157. The puckered
crystal structure endows BP with strong electronic,
photonic and mechanical anisotropy145,150,153,154,158,159

in contrast to graphene and TMDCs, as shown in Fig. 2d.
It is revealed that conductivity along the armchair
direction is much higher than along the zigzag direc-
tion145,160, and the excitons (binding energy 0.3-0.9 eV)
and trions (binding energy ~ 0.1 eV) in monolayer BP are
also highly anisotropic and robust149,161. The linear
dichroism in BP (Fig. 2d) can be indicated from the
optical selection rule154,162, thus their crystalline direc-
tion is easily determined through polarization-resolved
spectroscopy145,151,154. For the nonlinear optics, the
third-order nonlinearity of BP is comparable to graphene
and TMDCs, and saturable absorption163,164, four-wave
mixing165,166 and third harmonic generation167,168 are
observed in BP film.

Regarding mechanics, the theoretical in-plane Young’s
modulus is 41.3 GPa (106.4 GPa) along the armchair
(zigzag) direction in BP, and the sustained strain can be as
high as 0.48 (0.11) along armchair (zigzag) direction
owing to the puckered configuration158. Tao et al.169

measured the Young’s modulus of few-layer BP averagely
to be 27.2 GPa and 58.6 GPa in armchair and zigzag
directions, respectively. The strain effect is extensively
researched for anisotropic modulating the electrical and
optical functions of BP170–173. Although the bulk BP is the
most stable phosphorus allotrope at room temperature,
the few-layer BP is vulnerable to oxygen and water, which
hinders their practical applications. In the past years, the
stability of BP is comprehensively studied, and many
effective passivation techniques are developed, such as the
surface encapsulation with Al2O3, SiO2 and graphene, and
the structural modifications174.

2D materials fiber integration
The integrations of 2D materials to the optical fibers

have various architectures based on different materials
transfer processes39,88,175. According to the light-matter
interaction length, the 2D-materials-fiber structures can
be categorized into two groups: fiber-endface and guided-
waveguide integration as shown in Fig. 1. The cleaved
optical fiber endface is an intriguing platform since it
maintains nearly free-space light coupling and manip-
ulation along with remote and self-aligned optical path.
Graphene integration to fiber endface is firstly explored
for saturable absorption in ultrafast fiber laser for its easy
fabrications44,45, while suffering from the short light-
graphene interaction length and poor heat dissipation.
Researchers usually employed 2D-materials-polymer
composites and sandwiched them between two fiber
connectors45. With shrinking light-based technology,
such as plasmonics, photonic crystal and metamaterials/
metasurface, the multi-structures and materials on the
fiber endface will promise novel optical fiber optoelec-
tronics176,177. When 2D materials integrated on a fiber
capillary tip, the unique free-standing diaphragm of
atomic thickness enables ultrasensitive all-fiber micro-
electromechanical system (MEMS)50,51,178.
Waveguide integration means that light-matter inter-

action strength depends on the geometry scale of 2D
materials along the wave propagation, which is free from
their atomic-thickness limit. There are mainly three
waveguide coupling architectures, i.e. D-shaped fiber
(DSF), optical microfiber (MF) and microstructured fiber.
In particular, DSF is fabricated either by side-polishing or
chemical etching to expose the fiber core and enhance the
surface evanescent field179, and the flat surface structure is
beneficial for excellent contact with grafted 2D materi-
als46,96,180,181 as illustrated in Fig. 3a. While less explored,
the DSF embedded with nanophotonic structures and

Chen et al. Light: Science & Applications           (2021) 10:78 Page 5 of 18



functionalized by advanced materials are of great poten-
tials for all-fiber light-manipulation with robustness176,179.
As for MF integration, the 2D materials, for example
graphene, is either wrapped around or line-contacted with
an MF (Fig. 1 and Fig. 3b, c). Generally, an MF is con-
tinuously tapered or chemically etched from a standard
optical fiber (~125 μm), the diameter of which ranges
from hundreds of nanometers to tens of micro-
meters21,23,24. For subwavelength MF, the large evanes-
cent field enables strong interactions with 2D
materials56,182, and experimental results show that hybrid
MF-WS2 of sub-100 μm interaction length is sufficient for
>95% light absorption182. Technically, the surface encap-
sulated MFs of sub-micrometer diameters are difficult to
fabricate and handle, because they are easily broken or
contaminated in ambient environment. Xu et al. reported
a robust stereo MF-graphene structure with lab-on-a-rod
technique47,52,58,183. Since the fabrication process only
involves laminating a small piece of graphene onto a rod
of millimeters diameter, and the MF is helically winded
around a surface functionalized rod, arbitrary light-
graphene interaction length can be realized with minia-
turized size, as shown in Fig. 3c. Another uniqueness is
the formation of optical resonators through inter-
coupling between adjacent coils for cavity-enhanced
interactions47. Note that most of the researches focus
on the light absorption or spectral shift functions
by the fiber-2D-material devices47,55–57,88,184–186, the
exceptional valleytronics117–119, excitonics112,161, single
photo-emitters187,188 and optical-nonlinearity189,190 in 2D
materials interact with chiral field of MF191 deserves

in-depth explorations, which would stimulate all-fiber
applications for nanolasers192, chiral photonics122 and
quantum optics193.
The microstructured fibers with ingenious microfluidic

channels such as photonic crystal fiber (PCF) and hollow
core fiber (HCF) are another intriguing platform to
accommodate various materials in the hole walls. Indeed,
PCF infiltrated with gas, liquids, glasses, semiconductors
and metals have significantly extended their functionality
in the linear and nonlinear optics194. Integrating 2D
materials in PCF is nontrivial since the 2D materials of
atomic thickness not only keep PCF structure and optical
functions intact, but also they will perform unique
functions that cannot be realized in conventional mate-
rials195,196. As for the device preparations, solution pro-
cessed 2D materials are infiltrated into the air hole of PCF
or HCF using a pump, and a thin film is deposited after
solvent evaporation197,198. The solution injection techni-
que is simple, while the quality of infiltrated film is poor,
which significantly limits their further applications.
Recently, Liu et al.195,199 reported a direct chemical
vapor deposition (CVD) growth method, and realized
massive production of graphene-PCF/HCF with high
crystalline quality and environmental adaptability.
The breakthrough-work opens new possibilities for sci-
entific research and practical applications in all-fiber
optoelectronics.

Photonic and optoelectronic fiber devices
Motivated by the intriguing physical properties of gra-

phene and related 2D materials, many on-chip monolithic
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photonic and electronic devices are created and developed
in the past years36,38,39,41–43,59. In contrast, the develop-
ment of all-fiber photonics and optoelectronics with 2D
materials shows much slower pace. This section reviews
the mainstream applications of 2D-materials-optical-fiber
in the categories of polarizers, light-emitting devices,
optical modulators, photo-detectors, optical sensors and
nonlinear optics.

Fiber polarizers
Optical fiber polarizers operate in-line discriminating

polarized light transmission with high extinction ratio,
which is important in communication, sensor and laser
systems. The conventional in-fiber polarizers are based
either on asymmetrically polarization-dependent coupling
with external materials such as birefringent dielectrics and
plasmonic metals, or on single polarization fiber200. The
graphene-based fiber polarizers have flexible structure
designs and tunable functions by electric-gating (Fermi
level)46,96,201, and there are trade-offs between insertion loss
and polarization extinction ratio. Bao et al.46, demonstrated
ultra-broadband (visible to infrared), high extinction ratio
(27 dB) fiber polarizers on a DSF-graphene structure
(Fig. 3a). It is figured that high-order leaky modes with
transverse magnetic (TM) polarization suffers larger loss in
graphene than with transverse electric polarization (TE),
which contributes to the TE-pass polarizer46. Later works
show that under guided-mode interaction scheme, the pass-
polarization can be either TE or TM on various waveguide
structures47,96,180,202, and is fundamentally determined by
the in-plane electric field distribution in graphene lay-
ers201,203. Kou et al.47 tailored the stereo graphene-MF
structure, and they realized a high extinction ratio fiber
polarizer (~16 dB @ 1550 nm, Fig. 3d1–d2) and high-Q (2 ×
104) single-polarization fiber resonator (Fig. 3d3) by con-
trolling the near-field coupling between adjacent MF coils.
Note that when the adjacent MF coil is decoupled, the
stereo-MF-graphene structure is physically equivalent to
MF-on-graphene as illustrated in Fig. 3b; since the geometry
scale of functionalized rod (~ mm) is far larger than MF
(~ μm), the spatial curvature and Berry phase can be
neglected. Besides graphene and its derivatives, the strong
anisotropic 2D materials such as BP145,154 and ReS2

204,205

are promising candidates for polarimetric fiber components.

Light-emitting devices
In principle, 2D materials with direct electronic band-

gap are potentially efficient light emitters in the process of
excited electrons recombination with holes, and layered
TMDCs108,109,112,206, BP149,150 and their hetero-
structures207 are extensively studied for on-chip light
emitting devices. Nevertheless, the high-performance
fiber-emitting devices are much less researched. Chen
et al.182 reported monolayer monocrystalline WS2

transferred to silica MFs, and they observed tunable and
strong excitonic photoluminescence (PL) by strain gauge
(Fig. 4a1–a2), in contrast to the background spectra from
defects and doping in the fiber itself. The enhanced PL are
contributed by the near-field light interaction and col-
lection (efficiency ~12%). Recently, Liao et al.192 used a
simple photoactivation method to improve the room-
temperature quantum yields of monolayer MoS2 directly
grown onto silica microfibers, by more than two orders of
magnitude in a wide pump power range, which allows
direct lasing with strikingly reduced thresholds down to
5W/cm2 (Fig. 4b1–b2). In addition to the classical light
generation, the nontrivial single photon emitters (SPEs) in
defect or strained 2D material are attracting atten-
tions187,188,208,209, and the in-fiber SPEs offer alignment-
free collections and near-resonant excitation schemes.
The ideal on-demand SPE emits exactly one photon at a
time into a given spatiotemporal mode, and all photons
are indistinguishable210. Schell et al.211 demonstrated
coupling of SPEs from 2D hexagonal boron nitride to a
tapered MF (Fig. 4c1–c2), and found a collection effi-
ciency of 10% in the system. The performance of SPEs can
be significantly improved by fiber-cavity structures212.
Exploring 2D materials that generating telecom band
(~1550 nm) SPEs is strongly required in the optical-fiber
quantum networks209. The ultimate goals of on demand,
highly pure, and coherent SPEs integrated with optical
fiber remains to be solved.

Optical modulators
Optical modulators are the essential components in

photonics and optoelectronics, which operate at encoding
information into the light beams. 2D materials with
supreme and tunable photo-response functions by exter-
nal fields, have driven significant advances of optical
modulators, and there are several comprehensive reviews
in this topics42,43,213. Here we focus on the fiber-
compatible modulators. The all-optical modulator
(AOM) that uses one light beam to control the trans-
mission of another one, can realize ultrafast modulation
speed avoiding the electrical bottleneck. In principle, the
AOM based on Pauli-blocking effect55,56,58,180,214,215, Kerr
effect216,217 and opto-thermal effect57,218–221 are widely
studied in various 2D materials such as graphene, BP and
TMDC42,43,213,222–224. Liu et al.55 first reported broadband
all-optical modulation using a graphene-covered-
microfiber (GMF) structure. Later, Li et al.56 pushed the
response-time of GMF to the carrier-relaxation limit of
graphene ~2.2 ps though with a small modulation depth
(MD) of ~1.4 dB, as shown in Fig. 5a1–a2. It is challenging
to fabricate and manipulate such sub-wavelength GMF
(~1 μm) for practical applications. Chen et al.58 realized a
robust stereo GMF structure (Fig. 5b) for polarization-
dependent light modulation with a maximized MD of
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~7.5 dB and a modulation efficiency of ~ 0.2 dB/mW. Gan
et al.57 demonstrated an all-fiber phase shifter assisted by
graphene’s photothermal effect, and they obtained a phase
shift exceeding 21π with a maximized slope of 0.192 π/
mW, as shown in Fig. 5c1–c3. Towards the practical
applications, the performance indexes of fiber AOM such
as the control power consumption, switching time, MD
and insertion loss need to be globally optimized and
balanced225. For example, the larger MD generally
requires enhanced light-matter interactions either
through field confinement or interaction length, which
often brings higher insertion loss from materials absorp-
tion and scattering; the geometry scale of device, such as
waveguide diameter and length may also influence the
ultimate switching time42.
The electro-optic modulators (EOM) implementing

electric field to control the light properties are particularly
desirable in current communication networks. Although
there have been substantial achievements for on-chip EOM
with graphene42,43,213,226, based on the tunable electro-
absorption or electro-refractive effects. It is nontrivial to
develop high performance all-fiber EOM227,228 for their

seamless connection to the mainstay optical fiber systems.
Xu et al.227 proposed a high-speed traveling-wave EOM on
a graphene/MF structure with a 3 dB bandwidth of 82GHz,
as shown in Fig. 5e. Experimentally, Lee et al.96 demon-
strated ion liquid gating (~3 V) in multilayered-graphene-
DSF with MD of ~10 dB for TE polarization. Liu et al.195

reported a graphene-PCF EOM with large MD of ~ 20 dB/
cm under ~2 V gate voltage. These work use ion liquid as
efficient gating medium while suffering low modulation
speed and long-term stability. For high-speed modulations,
the adaptation of solid gating-dielectric (Fig. 5d–e),
sophisticated circuit design and 2D-materials engineering
in fiber EOM are worth of further research226,229,230.
Besides the aforementioned modulating configurations,

the acoustic-optic, mageto-optic, elastic-optic, electro-
mechanical and valley-optomechanical effects in 2D
materials are potential candidates for optical mod-
ulators42,43,144,231. For example, the unique elastic-optic
response in graphene has enabled mechanical intensity-
modulation in the GMF structure with an MD of ~0.04 dB/
mm under 1% strain (MF diameter of 5 μm), and the
modulation rate can reach hundreds of kilohertz184.
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Photo-detectors
Photodetectors convert light signals into electrical signals

that can be processed by standard electronic circuits.
Conventionally, the in-fiber optical signals are out-coupled
and detected by external planar photodetectors, which are
fabricated on silicon or other bulk semiconductors. The
development of 2D materials brings new possibilities to
realize all-fiber photodetectors (FPD), since they are of
broad photo-response spectra and highly mechanical flex-
ibility without any need of epitaxial substrate232,233. Sun
et al.234 demonstrated broadband (1500 nm–1600 nm)
photodetection in a microfiber-graphene photoconductive
device, while the photocurrent responsivity is as small as
~2.81mA/W as shown in Fig. 6c1–c2. Chen et al.235 fab-
ricated visible-light response FPD by directly bonding few-
layer MoS2 to a fiber endface along with paired gold
electrodes. Furthermore, they employed Van der Waals
heterostructures to improve device performances236–238.
For example, using multilayer graphene-MoS2-WS2 with
layer-by-layer transfer method, an ultrahigh responsivity of
6.6 × 107 A/W (Fig. 6a1–a2) and a time response of ~7ms
at 400 nm light wavelength were achieved. The sub-band
transitions and photogating effect in the heterostructures
enable broadband spectra detection ranging from
400–2000 nm with high responsivity (Fig. 6a3)236. Recently,
Zhuo et al.239 assembled a hybrid carbon nanotubes/gra-
phene on a DSF, and they realized a maximized photo-
responsivity of ~1.48 × 105 A/W (Fig. 6b1–b2)239. Jin

et al.240 developed a clean device transfer technique and
realize near-field coupled 2D InSe photodetectors on sur-
face of a multimode fiber with fast response time (~67 μs).
A proof-of-concept binary image transmittance and
detection by the InSe FPD was demonstrated, as shown in
Fig. 6d. Note that given the figures-of-merit in photo-
detectors232,233,241, i.e. responsivity, electrical/optical
bandwidth and noise equivalent power, there are still many
technical issues to be solved in FPD devices compared with
the on-chip photodetecting architectures232,241, since the
sophisticated micro-/nano-fabrication technology and
diversified 2D materials transfer/processing are stringently
lacking in current optical fiber platform. Extending 2D
library, combining nanophotonic structures and advancing
electrical designs in fiber-endface and DSF platforms are
exciting areas to be explored176,230,232,233,239,241–243.

Optical sensors
The optical sensors transform environmental stimuli into

the modulated light signal, which is widely implemented for
the ever-growing demand of Internet of Things88,244.
Generally, the 2D-material-integrated optical fiber sensors
hold high sensing performance considering the fact that
their optical responses are easily modulated by the external
stimuli87,245–247. In the last few years, researchers have
developed various hybrid-fiber schemes for physi-
cal52,184,248,249 and chemical sensing24,88,244,250–252. In par-
ticular, graphene and related 2D materials are appealing
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platform for chemical molecules sensing since they have
ultimate surface-to-volume ratio, large adsorption capa-
city and ultrafast carrier mobility88,244,253. In principle, the
adsorption of molecules changes the permittivity of the
2D materials, which in-turn modulates the parameters of
coupling light source, i.e. amplitude, phase, polarization
and wavelength24,88. The guided evanescent wave in either
MF or DSF waveguides88,251,252,254 with the fiber grat-
ing48,255,256, interferometer257,258 and microresonator52,259

structures are widely studied to increase the sensor sen-
sitivity and reduce the detection limit. For example, Wu
et al.48 reported a graphene-coated MF Bragg-grating for
sensitive gas sensing as shown in Fig. 7a1–a2, and the
obtained sensitivities are 4 pm/ppm and 2 pm/ppm for
ammonia and xylene gas, respectively. Hao et al.260

demonstrated graphene-based ammonia sensor using an
in-fiber Mach-Zehnder interferometer with a sensitivity of
~3 pm/ppm. Note that most of the work are based on

graphene, which often suffer from the cross-talk and
limited selectivity problems, it is promising to explore
other 2D materials, heterostructures or surface functio-
nalizations to achieve high-selectivity label-free sen-
sors244,261–263. Besides the aforementioned passive
sensing, Cao et al. recently demonstrated graphene-
enabled fluorescent resonance energy transfer in fiber-
microfluidic resonator for ultrasensitive and selective
biochemical detection, as shown in Fig. 7b1–b253,264.
They achieved individual-molecule sensitivity for dopa-
mine, nicotine and single-strand DNA detection through
dual amplifications from optical pump and electrical
locked-in detection53. An et al.54 achieved individual gas
molecule detection employing electrically tunable four-
wave-mixing effects in graphene bipolar-junction-
transistor heterogeneous DSF, as shown in Fig. 7c1–c2.
The atomic-layer thickness of 2D materials with supreme

mechanical properties enables high-performance MEMS
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for fiber sensing applications50,138. Figure 7e shows the
typical structure of a fiber-integrated MoS2-MEMS sen-
sors, in which the free-standing MoS2 diaphragm and fiber
endface form a Fabry-Perot interferometer178. The external
stimuli deform the MoS2 membrane and change the cavity
length, which shifts the optical interference spectra. The
relation between the deflection of the diaphragm and
external pressure could be modeled as178:

P ¼ Aσ0tΔL
r2

þ BEtΔL3

ð1� υÞr4 ð3Þ

where A and B are dimensionless coefficients, P is the
applied pressure, σ0 is the pre-stress, r and t are the radius
and thickness of a circular diaphragm, ΔL is the center
deflection of diaphragm exposed to the pressure, E and υ
are materials Young’s modulus and Poisson’s ratio
respectively. Ma et al.50 first reported a miniature fiber-
tip pressure sensor using a few-layer graphene as a
diaphragm, and they observed a spectra sensitivity over
39.4 nm/kPa. Later, higher pressure sensitivity is achieved
in MoS2 diaphragm sensors, as anticipated by their
reduced Young’s modulus and improved film quality
(Fig. 7e)178. Zheng et al.51 demonstrated ultrasensitive
(2.2 × 105 nm/A2) and fast-response (~0.25 s) electrical
current sensor by depositing both gold electrodes and
graphene membrane on an etched fiber tip, as shown in
Fig. 7d. The highly efficient and localized ohmic-heating,

and high thermal conductivity in graphene film synergis-
tically contribute to the high-performance sensors.
Besides the quasi-static deformations, the intrinsic
nanomechanical resonators by clamped 2D materials also
allow the development of vibrational fiber-optic sensors
for robust force, mass and pressure measurements265,266.
Note that both the resonating frequency and quality factor
of 2D materials in the fiber platform are far less than the
on-chip devices267,268, and further research are needed to
optimize the 2D materials geometry and manipulate the
pre-stress in fiber devices.

Nonlinear optics
Nonlinear optics is the study of the phenomena that

optical response of materials are modified by the light
field, and it has found broad applications in novel light
source generating, signal processing and optical imaging.
The state of art 2D materials have enabled many scientific
advances in nonlinear effects, such as saturable absorp-
tion, Kerr effect, harmonic generation and parametric
oscillation93,189. In particular, the saturable absorbers (SA)
that realize high (low) transmittance of high (low) power
density beam, are comprehensively studied in 2D mate-
rials for pulse laser generation, of which the laser wave-
length spans from visible to the mid-infrared and the
pulse width ranges from microsecond to sub-
picosecond92,93,269–271. For example, Bao and Sun
et al.44,45 pioneered the study of the graphene mode-
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locked ultrafast laser by simply depositing graphene on a
fiber endface, as shown in Fig. 8a1–a3. Compared with
conventional semiconductor SA mirrors (SESAMs) and
nanotubes, graphene SA is found to have an intrinsic
wideband operation175. Moreover, the linear Dirac-cone
electronic bandstructure allows the tunable saturable
absorption by either electric gating or thermal effect95,
thus the pulsed laser state can be actively controlled. Lee
et al.96 first reported electro-static gating in graphene-DSF
devices (Fig. 8b), and they realized electrically tunable
fiber laser at various operational regimes. Later, Li et al.94

demonstrated state-variable fiber laser by engineering the
Fermi-Dirac distribution of graphene based on an electric
heating method (Fig. 8c). Recently, Bogusławski et al.272

adapted graphene-based EOM into a fiber cavity (Fig. 8d),
and obtained electrically controlled repetition rate of
generated pulses.
The integrations of 2D materials in fiber waveguide

structures54,56,180,182,273,274 are effective methods to
enhance and manipulate the nonlinear optical interac-
tions. Wu et al.186,275 reported cascaded four-wave-
mixing with graphene-coated-MF structure because of
graphene’s ultrahigh third-order nonlinearity. Chen
et al.182 systematically studied the anisotropic response of
SHG in hybrid WS2-MF as shown in Fig. 9a1–a2; fur-
thermore, they demonstrated dynamic control of SHG by

strain gauge (Fig. 9a3). Jiang et al.274 reported high-
efficiency second-order nonlinear processes (SHG and
sum frequency generation) in an MF assisted by few-layer
GaSe as shown in Fig. 9b1–b5. Fundamentally, 2D-
materials enhanced optical nonlinearity is limited by the
trade-off between absorption and interaction length. The
defects absorption/scattering introduced during 2D
materials transfer processes are always serious issues in
current optical devices. Recently, Zuo et al.196 reported
high crystalline as-grown MoS2 in 25-cm long HCF, and
they observed that both SHG and third-harmonic gen-
eration (THG) were enhanced by ~ 300 times compared
with monolayer MoS2/silica. This work will inspire
development of clean 2D-materials-fiber devices with
great potential of mass production and stimulate versatile
nonlinear applications. Besides using their intrinsically
high optical nonlinearity, the electrically tunable non-
linear response97,98,132 and plasmonic-enhanced non-
linearity in nanostructured 2D materials276,277 are
promising directions for reconfigurable nonlinear fiber
devices, which is difficult to achieve with conventional
bulk materials.

Challenges and opportunities
In the past years, the silica optical fibers merged with 2D

materials have stimulated rapid progresses for in-line
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manipulating light beams in respect of polarization, phase,
intensity and frequency, which shed light on the inte-
grated all-fiber photonic and optoelectronic systems. Note
that most of the applications remain at proof-of-concept
or prototype stages, and many key challenges, such as
batch reproduction of devices and reliable packaging are
still waiting to be addressed towards the ultimate prac-
tical applications. With advanced fiber manufacturing,
there are sophisticated techniques to fabricate various
bulk fiber structures such as DSF, PCF, HCF and cleaved
fiber-endface. With respect to materials production,
different forms of 2D materials from the solution-
processed nanosheets to the CVD-grown large-size sin-
gle crystals are already available68,278,279. Nevertheless,
the conventional mechanical transfer of 2D materials to
fiber structures are time consuming and not scalable, and
the unintentional doping and structural defects are
easily introduced to hybrid fiber devices, which will sig-
nificantly influence their optoelectronic perfor-
mance46,56,182,185,192,235,280. The recently developed
functional inks and prints of 2D materials281 are gaining
momentum for mass production with a high speed, low
cost and moderate resolution (< 100 μm), and is poten-
tial for fabricating fiber devices that does not require
crystallined 2D materials88,252,282. Using a direct CVD

growth method to produce polycrystalline structure of
2D materials (graphene and MoS2) in PCF/HCF has also
been achieved in 2019195,196, which may provide the
ultimate solution to most of the hybrid fiber devices.
Device packaging is another vital issue to realize long-
term and stable operation of 2D materials especially for
air unstable materials, such as BP, MoTe2 and
Bi2Se3

145,283,284. The excellent electrical insulation, high
thermal stability and chemical inertness render hex-
agonal boron nitride as one of the most important can-
didates for passivation and protection layer285.
As for the future development of hybrid fiber devices,

the novel materials and advanced structures are two
important ingredients for photonic and optoelectronic
integration. Beyond the conventional graphene, BP and
TMDCs, lots of other layered and non-layered 2D mate-
rials are discovered with diverging properties70,71,233,286,
and their Van der Waals heterostructures further reveal
unusual physics and properties66,67,287,288. In particular,
the 2D magnets such as CrI3 and Fe3GeTe2 with
magneto-optical Kerr effect show great potential for
optical non-reciprocal fiber-devices at room tempera-
ture289,290. The twisted 2D materials with Moire pattern
in graphene and TMDCs demonstrate exotic optical and
electronic properties, which is intriguing to extend the
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optical spectra of photodetection and light emitting288,291

in fibers. In the scope of photonic structures, the inter-
action of confined chiral field in MF191 and valley polar-
ization in TMDCs117–119, such as MoS2 and WS2, may
promise novel all-fiber optical routers122. The BP of highly
anisotropic linear and nonlinear optical response interacts
the vector field in optical fiber modes should create
extraordinary polarimetric fiber devices. On the other, the
adaptation of external nanophotonic structures in DSF
and fiber endface combining with 2D materials will
achieve ultimate all-fiber light-matter interactions and
light beam manipulation177. Beyond the classical-optic
applications, the subwavelength MF is an efficient inter-
face for coherent transfer of quantum states between
atomic and photonic qubits, due to its strong transverse
confinement of the guided field and the long interaction
length along the propagation212. The emergence of 2D
materials based SPEs in MF platform may provide an
alternative fiber-integrated source and open promising
new avenues for quantum photonics.
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