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Abstract: Liquid crystals are excellent candidates for tunable optical elements due to their large
birefringence and continuous tunability by external fields. A dual-frequency liquid crystal lens
integrated with Pancharatnam–Berry phase was fabricated via a dynamic photo-patterning technique.
The proposed lens exhibited distinctive polarization-dependent characteristics and ultra-high
efficiency rates of up to 95%. Via merely alternating the frequency of the applied electric field,
the switching time between unfocused and focused states was measured in submilliseconds.
This work supplies a new strategy for fast-response, high-efficiency and helicity-dependent lens with
merits of easy fabrication and low power consumption.

Keywords: diffractive lens; Pancharatnam–Berry phase; dual-frequency liquid crystals;
patterned photoalignment

1. Introduction

Nowadays, liquid crystals (LCs) have experienced rapid development due to their pronounced
optical anisotropy and continuous external field tunability and have become prospective candidates
for tunable diffractive optical elements. Adaptive LC lenses have been developed to be a useful type of
diffractive element, and play vitally important roles in the development of machine vision, ophthalmic
apparatuses, augmented reality display fields, etc. [1–3]. Several practical LC techniques, such as
zone-patterned structures [4], hole or hybrid-patterned electrodes [5–9], and inhomogeneous polymer
networks [10], have been proposed for lens fabrication.

The applications of these electrically-tunable LC lenses are determined by two key parameters,
switching time and optical efficiency. To improve the switching responsiveness, several kinds of LCs
with fast-responsive characteristics, such as ferroelectric LCs, blue-phase LCs, dual-frequency LCs
(DFLCs) and polymer-dispersed LCs [11–13] have been employed. However, the delicate electrodes
and inhomogeneous materials are only suitable for the generation of binary phase profiles [2], and the
diffraction efficiency of a LC lens is severely restricted. Moreover, the complex fabrication makes these
strategies costly and inefficient. By introducing orthogonal azimuthal angle control of LCs, realized
by a photoalignment technique, Fresnel lenses, with their diffraction efficiencies improved to 40.5%,
are presented [14]. More recently, the Pancharatnam–Berry (PB) phase has been integrated to realize
a continuous lens phase profile, thus pushing the theoretical limit to 100% [15]. If one can supply a
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simple and efficient way for fabricating PB lenses with fast response LCs, the two key requirements
could be satisfied simultaneously.

Here, a polarization lens based on DFLC is demonstrated by introducing a PB phase [16],
which can greatly improve the experimental diffractive efficiency up to 95%. The designed PB
lens is an inhomogeneous LC wave plate, in which optical axis distribution is dependent on the
designed focal length (F) and the free space wavelength (λ). A dynamic microlithography system
with a LC photo-patterning technique is utilized for the PB lens preparation to realize continuously
variant director distributions. By merely alternating the frequency of the applied external electric
field, the switching time between transformed-focused state and remained-unfocused state reaches
the submillisecond scale. In addition, the focusing/defocusing characteristics are determined by
the helicity of the incident light. This work provides a practical strategy for high-efficiency and
fast-responsive optical diffractive elements.

2. Principles and Experiments

2.1. Principles

A PB lens can locally modulate the incident polarization states and results in a space-variant
output phase, namely the PB phase [17]. The PB phase results from the space-variant manipulation of
polarization states. A typical design using the PB phase concept relies on laterally inducing different
polarization variations of a propagating beam, which can be realized by inhomogeneous anisotropic
media, such as LCs. The designed optical axes of a DFLC PB lens are homogeneous along the z axis in
the LC cell and obey the equation on both substrates (defined as the x-y-coordinate axis):

α =
π

λ

(√
r2 + F2 − F

)
(1)

where α is the LC azimuthal angle, r is the radius corresponding to the x-y coordinates, r2 = x2 + y2,
F stands for the designed focal length and λ indicates the free-space wavelength. Figure 1 shows the
simulated director distribution of the PB lens structure with the theoretically designed focal length
being F = 10 cm (for λ = 671 nm). The continuous color changes from blue to red indicate that the
optical axis orientation of the desired PB lens continuously changes from 0 to π.
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Figure 1. The simulated director distribution of the Pancharatnam–Berry phase lens.

The property of the helicity-dependent diffraction can be theoretically derived by the Jones matrix
calculation. The transformation in a PB lens can be analyzed as follows:

T = R(−α) ·
[

exp(− iΓ/2) 0
0 exp(iΓ/2)

]
·R(α)

= cos Γ
2 I− i sin Γ

2

[
cos 2α sin 2α

sin 2α − cos 2α

] (2)

where Γ = 2π∆nd/λ is the phase retardation, ∆n is the LC birefringence, and d indicates the
LC cell gap. Considering a right/left circular polarized input light, which can be described as
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Ein = χ(±) = 1/
√

2
(

1 ±i
)T

, the two spin eigenstates denote the left (+) and right (−) circular
polarization states. After passing through the LC PB lens, the output can be expressed after applying
the transformed matrix:

Eout = T · Ein = cos
Γ
2
· χ(±) − i sin

Γ
2
· exp

[
±i

2π

λ

(√
r2 + F2 − F

)]
· χ(∓) (3)

When the incident is a right circular polarized (RCP) beam, the output can be taken as two parts:
The residual RCP component, and the transformed left circular polarized (LCP) part, added to a
spherical phase factor exp{−i2π[(r2 + F2)1/2 − F]/λ} resulting in a concave spherical wavefront. As a
consequence, the input RCP can be transformed into a focused LCP. On the contrary, for an LCP
incident beam, the defocused transformed RCP can be obtained. Only when the phase retardation
satisfies the half-wave condition, i.e., Γ = (2n + 1)π (n is an integer), can the residual part be totally
suppressed and the obtained output is a pure focused/defocused beam. In this case, for a circular
polarization incident, it will theoretically be 100% transformed into a focused/defocused state.

For common nematic LCs, when the electric field is switched off, the relaxing time of LCs return
to the original state is determined by the alignment conditions, as well as the LCs intrinsic elastic and
viscosity properties, which can reach the tens of milliseconds scale. DFLC is a kind of LC mixture
with opposite dielectric anisotropy [18,19]. It exhibits a positive dielectric anisotropy (∆ε > 0) when
the applied electric field frequency is below f c (defined as crossover frequency). It becomes negative
(∆ε < 0) at the frequency f > f c. When an appropriate external electric field with f > f c is applied,
the LC directors orient perpendicularly to the electric field direction. While f < f c, the LC director
orientation tends to be parallel to the electric field. This phenomenon enhances the LC’s responsive
ability by merely alternating the applied frequency at a relatively low voltage, enabling the possibility
of a submillisecond scale response.

2.2. Setup and Experiments

The orange lines in Figure 2a schematically show the director distribution of a PB lens. The dark
domains under the crossed polarizers correspond to regions with LC directors approximately parallel
or perpendicular to the polarizer, whereas the bright domains correspond to regions with LC directors
around ±45◦ with respect to the polarizer. Figure 2b presents a micrograph image of a DFLC PB lens
sample with designed F = 10 cm (for λ = 671 nm) observed under a cross-polarized optical microscope.
The continuous variation of the brightness and darkness gives a vivid exhibition of the space-variant
directors. When rotating the sample, the bright and dark domains interconvert gradually, further
manifesting the continuous space variant of the directors. As the cell gap d is experimentally optimized
to make the phase retardation satisfy the half-wave condition, the light is totally focused (i.e., On state).
When the phase retardation approximates zero because the DFLC is driven by a low frequency signal,
the unfocused state (i.e., Off state) is obtained. It can be turned to the On state rapidly with a high
frequency signal.
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Figure 2. (a) Schematic director distributions and (b) the corresponding micrograph of the DFLC PB
lens with F = 10 cm. The scale bar is 200 µm.
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To characterize the diffractive performance of the PB lens, an experimental optical setup for
generating and analyzing focused/defocused beams was built, as illustrated in Figure 3. As shown
in Figure 3, a 671 nm laser beam passes through a polarizer and then a quarter wave-plate (QWP),
and then illuminates on the sample and finally is captured by a Charge Coupled Device (CCD).
The angle between the polarization direction and the c-axis of the QWP was set to be +45◦/−45◦ to
control the incident RCP/LCP polarization, respectively. The transformed output focused/defocused
beams are thus generated.
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3. Results and Discussion

The microscope images of the PB lens under crossed polarizers at an applied voltage 25 V with
frequencies of 1 kHz and 65 kHz are shown in Figure 4a,b. When a 671-nm incident RCP passes
through the sample, the transmitted pattern is shown in Figure 4c. A Gaussian-like beam is observed
in the center, and the variant colors indicate the intensity. In this situation, the applied voltage was
25 V with a frequency of 1 kHz below f c (the f c was measured as 40 kHz at this voltage). Thus,
the LCs tend to orient parallel to the external field and have an isotropic effect on the incident light.
This can also be observed for the LCP condition. The obtained output light stays the same as the
incident state (unfocused state), which can be defined as the Off state. When applying a high-frequency
electric field (25 V, 65 kHz), the LCs tend to reorient perpendicularly to the electric field (i.e., parallel
to the substrates) and hold gradiently variant orientations, forming the focused state (i.e., On state)
as shown in Figure 4d. Figure 4e reveals that a defocused diffracted beam has been generated on
the concentric position for an LCP incident beam when merely alternating the c-axis orientation
of the QWP and keeping the external field unchanged. Figure 4d,e indicate that the PB lens is
helicity-dependent, inducing a concave/convex spherical wavefront to the RCP/LCP, respectively.
Thus, a focused/defocused beam is obtained. As expected, for a linear-incident polarization, the two
circularly polarized beam components are equally diffracted to both focused and defocused states,
as shown in Figure 4f. Thus, switching between two focused/defocused states could be realized by
merely adjusting the incident polarization. In addition, the measured focal length is F = 10.11 cm,
which approximates the designed value.
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with the frequency of (a) 1 kHz and (b) 65 kHz, and the images of diffraction patterns at 25 V, 1 kHz of
(c) right circular polarization (RCP), and at 25 V, 65 kHz of (d) RCP, (e) left circular polarization (LCP)
and (f) linearly polarized incident beams. The scale bar is 200 µm. The colored scale bar shows the
normalized intensity gradient.

Therefore, while keeping these voltages, the switching between On/Off states could be realized
by merely alternating the frequency. As a key parameter of a diffractive element, the switching time
is measured. Since a larger voltage quickens the response [20], the switching performance of the
PB lens sample is measured by applying an external electric field of 25 V. Furthermore, the major
challenge of DFLC devices is the noticeable dielectric-heating effect originating from the applied high
frequency, which in turn causes the f c to drift [21,22]. The f c satisfies the Arrhenius equation, and is
proportional to exp(−E/kBT), where kB is the Boltzmann’s constant, and T is the absolute temperature.
The f c increases with the increasing of T [23]. In our experiments, the measured f c was 40 kHz.
DFLC dielectric constant ∆ε was 4.2 at 1 kHz, while it shifted to −3.1 at 65 kHz. When the frequency
was over 100 kHz, ∆ε maintained a constant value of −3.5. A higher frequency will induce a more
serious thermodielectric effect, which leads to an instability of crossover frequency. To minimize the
thermodielctric effect, the frequency was set at 65 kHz. In order to get a precise measurement, we added
a tunable aperture (the diameter set at 0.40 millimeters) before the optical power detector, and adjusted
it to an appropriate position to ensure that the focused beam could completely pass through it, while
only a very small amount of the unfocused beam passes. As illustrated in Figure 5, a 25 V alternating
voltage was applied with frequency interconverting of 1 kHz and 65 kHz, and lasting for 5 ms each
signal cycle. The switching times between focused/unfocused states (defined as the duration time that
intensity changes from 10% maximum to 90% maximum and reverse) were measured as 680 µs and
550 µs, respectively. Thus, submillisecond switching processes were achieved.



Crystals 2019, 9, 111 6 of 8

Crystals 2019, 9, x FOR PEER REVIEW  6 of 8 

 

 

Figure 5. The switching response of the sample (gray line) to the applied signals (orange line). 

Response performance could be further improved by increasing voltages or reducing the cell 
gap. By introducing a linearly gradient phase, the focused and defocused states can be spatially 
separated to two focal points with one beam focused and the other diverged. Moreover, the 
transformed focused/defocused states can be distinguished with the unfocused state [24]. Though a 
simple PB lens is demonstrated in this work, it provides a strategy for realizing optical elements with 
more complicated and fantastic structures.  

4. Materials and Methods  

Photoalignment is suitable for high-quality LC alignment. Here, a polarization-sensitive 
medium, sulfonic azo dye SD1 (Dai-Nippon Ink and Chemicals, Japan), was utilized as the 
photoalignment agent. When a linearly polarized UV is incident onto the alignment layer, SD1 
molecules tend to reorient their absorption oscillators perpendicular to the polarization direction in 
order to minimize photon absorption [25], consequently guiding the LC orientations owing to the 
excellent fluidity and continuity of LC.  

A digital micro-mirror device-based dynamic microlithography system [26] was utilized to 
perform the photo-patterning on SD1 (0.3% solution in dimethylformamide) spin-coated indium-tin-
oxide glass substrates (1.5 × 2 cm2, 1.1 mm thickness). The substrates were ultrasonically bathed, UV-
ozone cleaned and cured at 100 °C for 10 minutes in advance. To satisfy the half-wave condition for 
λ = 671 nm, spacers 5 μm in diameter were selected to keep the cell gap. One substrate covered with 
spurted spacers and a counter one were put together and sealed by epoxy glue to form the cell. Then, 
the cell was placed at the image plane of the microlithography system to record the designed PB lens 
pattern. After an eighteen-step five-time-partly-overlapping UV exposure [27], a quasi-continuous 
space-variant orientation of SD1 was carried out. When the DFLC (HEF951800100, HCCH, China. Δn 
= 0.206 at λ = 671 nm) is capillarily filled, a polarization lens was accomplished.  

5. Conclusions 

In this work, we proposed and demonstrated a high-efficiency and fast-response DFLC 
polarization lens via a dynamic photo-patterning technique. The switching between 
focused/defocused states and focused/unfocused states can be realized by alternating the incident 
polarization and the frequency of certain applied electric field, respectively. A high diffraction 
efficiency of up to 95% is obtained for a focused state with a circular polarization incident. Via merely 
alternating the frequency of applied electric field, the response time between focused and unfocused 
states reach 680 μs and 550 μs, respectively, both of which are in the submillisecond scale. It supplies 
a new design for high-efficiency and fast-response optical diffractive lens with the merits of easy 
fabrication and low power consumption. It may also broaden LC lens applications in integrated 
optics, information processing, optical communications, and other fields. 

Figure 5. The switching response of the sample (gray line) to the applied signals (orange line).

Response performance could be further improved by increasing voltages or reducing the cell gap.
By introducing a linearly gradient phase, the focused and defocused states can be spatially separated
to two focal points with one beam focused and the other diverged. Moreover, the transformed
focused/defocused states can be distinguished with the unfocused state [24]. Though a simple PB
lens is demonstrated in this work, it provides a strategy for realizing optical elements with more
complicated and fantastic structures.

4. Materials and Methods

Photoalignment is suitable for high-quality LC alignment. Here, a polarization-sensitive medium,
sulfonic azo dye SD1 (Dai-Nippon Ink and Chemicals, Japan), was utilized as the photoalignment
agent. When a linearly polarized UV is incident onto the alignment layer, SD1 molecules tend to
reorient their absorption oscillators perpendicular to the polarization direction in order to minimize
photon absorption [25], consequently guiding the LC orientations owing to the excellent fluidity and
continuity of LC.

A digital micro-mirror device-based dynamic microlithography system [26] was utilized
to perform the photo-patterning on SD1 (0.3% solution in dimethylformamide) spin-coated
indium-tin-oxide glass substrates (1.5 × 2 cm2, 1.1 mm thickness). The substrates were ultrasonically
bathed, UV-ozone cleaned and cured at 100 ◦C for 10 minutes in advance. To satisfy the half-wave
condition for λ = 671 nm, spacers 5 µm in diameter were selected to keep the cell gap. One substrate
covered with spurted spacers and a counter one were put together and sealed by epoxy glue to form
the cell. Then, the cell was placed at the image plane of the microlithography system to record the
designed PB lens pattern. After an eighteen-step five-time-partly-overlapping UV exposure [27],
a quasi-continuous space-variant orientation of SD1 was carried out. When the DFLC (HEF951800100,
HCCH, China. ∆n = 0.206 at λ = 671 nm) is capillarily filled, a polarization lens was accomplished.

5. Conclusions

In this work, we proposed and demonstrated a high-efficiency and fast-response
DFLC polarization lens via a dynamic photo-patterning technique. The switching between
focused/defocused states and focused/unfocused states can be realized by alternating the incident
polarization and the frequency of certain applied electric field, respectively. A high diffraction efficiency
of up to 95% is obtained for a focused state with a circular polarization incident. Via merely alternating
the frequency of applied electric field, the response time between focused and unfocused states reach
680 µs and 550 µs, respectively, both of which are in the submillisecond scale. It supplies a new design
for high-efficiency and fast-response optical diffractive lens with the merits of easy fabrication and
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low power consumption. It may also broaden LC lens applications in integrated optics, information
processing, optical communications, and other fields.
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