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Abstract: In this paper, we propose a tunable dielectric metamaterial absorber in the terahertz (THz)
range. The absorber is composed of a silicon pillar array embedded in a liquid crystal (LC) layer,
which is sandwiched by two graphene electrodes. By way of varying the applied bias, the LC
orientation can be continuously tuned. At a saturated bias, all LCs are vertically driven, and an
absorption peak of 0.86 is achieved at 0.79 THz. When the bias is turned off, the same LCs are
horizontally aligned, and the absorption peak degenerates into two smaller ones. A 47% modulation
depth at 0.79 THz is obtained via numerical simulation with experimental feasibility considered.
Such an active THz dielectric absorber may be utilized as part of various active THz apparatuses in
THz imaging, sensing, switching, and filtering.
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1. Introduction

Terahertz (THz) waves, the last exploited part in the electromagnetic spectrum, have great
potential in security screening [1], biological detection [2], and wireless communication [3].
Among various THz devices, an absorber that can efficiently capture wave energy is of vital
importance. Metamaterial absorbers (MMAs) have drawn particular attention due to its capability of
arbitrary frequency and amplitude modulation via freely designing their geometry [4]. After Tao et al.
presented the first THz metallic MMA in 2008 [5], a tremendous amount of research on MMAs
have been performed [6]. Integrated with functional materials including phase-change media [7],
semiconductors [8], graphene [9], and liquid crystals (LCs) [10,11], MMAs exhibit tunable
electromagnetic responses. The metals used in traditional metallic MMAs are often the highest
electrically conductive materials in order to achieve high-Q resonance in MMAs. High electrical
conductivity leads to high thermal conductivity and subsequently high ohmic loss. For applications
where thermal properties are vital—e.g., THz imaging, sensing, and filtering—metal-free devices
are preferred. To address this issue, Liu et al. developed a dielectric THz absorber based on hybrid
dielectric waveguide resonances [12] and achieved an absorption of 97.5%. The functionality of this
absorber is static. To further exploit dielectric MMAs with dynamic functions is meaningful.

LC presents excellent electro-optic tunability thanks to its broadband large birefringence and
external field responsibility. Through spatially controlling the tilt or azimuthal directors of LC,
the dynamic phase or geometric phase of THz wave can be freely manipulated [13,14]. However,
these components all require a large LC thickness to accumulate sufficient phase retardation, leading to
a slow response and high operating voltage. Recently, on the basis of the distinct influence on
the resonance of metamaterials of surrounding LC refractive index change, various active THz
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metadevices have been demonstrated, such as active filters [15,16], polarization converters [17],
and phase shifters [18]. Here, both the cell gap and the operating voltage are drastically decreased.
Through precisely designing the geometry of metadevices and optimizing the matching between the
refractive index change of LC and electromagnetic resonant boundary condition, a dynamic tuning
with large modulation depth can be reached.

Here, we propose a tunable THz dielectric MMA, which is composed of a silicon pillar array
embedded in an LC layer driven by graphene electrodes. The function of this absorber relies on the
overlapping between electric and magnetic dipole resonances of the silicon pillar array. We precisely
set the radius of the pillar to satisfy the boundary condition at the bias saturated state, thus it behaves
as a perfect absorber. While turning off the bias, the overlapped resonances are broken due to the
refractive index change of LC. As a result, the absorption peak is split and its amplitude drops to half
of the original one.

2. Tunable Dielectric Metamaterial Absorber

The configuration of the absorber is illustrated in Figure 1a. Both substrates were 500-µm-thick
fused silica and covered with graphene electrodes. One of them could be spincoated with a 5-µm-thick
polydimethylsiloxane (PDMS) film. The silicon pillar array could be fabricated on a 60-µm-thick
heavily-doped silicon on insulator (SOI) using a Bosch process. Then it was bonded to the substrate
with oxygen-plasma-treated PDMS [19]. Subsequently, the top SOI handle was stripped off with a
lateral force. The unit geometry of the silicon pillar array is shown in Figure 1b. The PDMS layer
separated the pillar array from the graphene electrode and worked as a refractive index matching layer
simultaneously. Both substrates could be spincoated with a sulfonic azo dye (SD1) alignment layer,
and then separated by a 110-µm-thick Mylar film to form the cell [20], as shown in Figure 1a. Finally,
a home-made high-birefringence LC NJU-LDn-4 with no = 1.59 + 0.006i and ne = 1.90 + 0.001i around
0.80 THz could be infiltrated [21] to obtain the tunable THz dielectric MMA.
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Figure 1. (a) The decomposition diagram of the LC integrated dielectric MMA. The yellow arrows
indicate the alignment direction. (b) The unit dimension of the pillar resonator: lattice periodicity,
p: 210 µm; radius, r: 64 µm; height, h: 60 µm.

We use hybrid dielectric waveguide resonances to explain the principle of this absorber. When the
THz wave is incident along the z-axis (Figure 1a), the dielectric pillar works like a common waveguide.
The resonator supports two different groups of hybrid modes, HE and EH. For HE mode, Hz/Ez << 1;
while for EH mode, Ez/Hz << 1. Three dimensions of the field variation in the silicon pillar are denoted
by different indices, i.e., HEnml and EHnml. Here, only the lowest magnetic dipole mode (HE111) and
electric dipole mode (EH111) are taken into account [22]. Each pillar is represented by an ideal Huygens’
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source, i.e., a pair of electric and magnetic dipoles oriented in the x- (EH111) and y- (HE111) direction
respectively [23]. When both resonances occur at the same frequency, impedance matching is satisfied,
which means the THz wave is totally absorbed. HE111 always exists for a given resonator, while EH111

has a cutoff condition. At a resonance wavelength of λ0, the cut off condition for a pillar dielectric
resonator is given by [24]:

r = 0.61
λ0(

n2
Si − n2

LC
)1/2 (1)

Wherein, r is the radius of the pillar, and nSi and nLC are the refractive indices of silicon and
surrounded LC respectively. For the lowest modes, the desired minimum height h of the resonator can
be approximated as a half-wave dipole with

h =
λ0

2nSi
(2)

Therefore, the pillar parameters are set as shown in Figure 1 to ensure both HE111 and EH111 are
supported at the same frequency when the surrounding refractive index was 1.59 (bias saturation
state). After turning off the bias, the surrounding refractive index increased to 1.90, inducing the cutoff
of EH111. The HE111 and EH111 no longer existed at the same frequency. Therefore, the absorption
peak degenerated into two different parts, leading to the resonance vanishing at the same frequency.

The simulations were carried out using the commercial Lumerical FDTD Solutions. The refractive
index of the silicon was 3.41 + 0.12i. Since a thin layer high transparent PDMS was utilized, we only
consider the real part of its refractive index, i.e., 1.60. The LC orientation FDTD module was applied
to simulate the optical properties of the absorber along with the variation of LC directors. For the
x-incident polarization, the refractive index of NJU-LDn-4 could be tuned from no to ne using an
electric field. Compared to the visible and near-IR range, the feature size of metamaterials in the
THz region is much larger and its influence on LC anchoring can be neglected, permitting a better
tunability [25]. Schematics of LC orientations in a bias saturated state is illustrated in Figure 2a.
In this case, the environmental refractive index was not along x-axis. As shown in Figure 2b, a strong
absorption peak (calculated from corresponding transmittance and reflectance) was observed at
0.79 THz. The side view magnetic and electric field distributions of a single unit at 0.79 THz are
illustrated in Figure 2c,d. The images reveal that the magnetic dipoles lay along the y-axis while the
electric dipoles lay along the x-axis. The intensity distribution indicated that both dipoles were highly
localized in the silicon pillar, further facilitating the overlap of HE111 and EH111. The impedance match
was fulfilled as both the electric and magnetic resonances occurred at the same frequency [26].

After the bias was removed, the LC returned to the original orientation, as shown in Figure 3a.
For the same x-incident polarization, the refractive index changed to ne. As presented in Figure 3b,
the absorption peaks of EH111 and HE111 modes separated. Their magnetic and electric field
distributions at corresponding resonant frequencies are presented. The resonant frequency of the
magnetic dipole was 0.81 THz, and the corresponding side view distribution is shown in Figure 3c.
The resonant frequency of the electric dipole was 0.76 THz, and the distribution of the electric field
in the x-z plane is shown in Figure 3d. The opposite frequency shift caused the degeneration of the
absorption peak, further inducing an obvious absorption reduction. It needs to be noticed that the
reduction was caused by light confinement but not the loss induced by the imaginary part variation of
LC, which contributed less than 5% of total absorption change.
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Figure 2. (a) The LC orientation in the bias saturated state. (b) Simulated spectra of reflectance,
transmittance, and absorbance at bias saturated state. The (c) magnetic field of a single unit in the y-z
plane, and (d) electric field in the x-z plane at 0.79 THz. The white rectangles in (c,d) represent the edge
of the pillar unit, same hereinafter.
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Figure 3. (a) The LC orientation in the bias OFF state. (b) Simulated spectra of reflectance, transmittance,
and absorbance at bias OFF state. The (c) magnetic field of a single unit in the y-z plane at 0.81 THz.
and the (d) electric field in the x-z plane at 0.76 THz.

To vividly present the evolution of the absorption peak, we depict the dependency of the EH111

and HE111 modes on the LC orientation (ϕ) in Figure 4a. The LC was set as a uniaxial medium
in simulation and ϕ was defined as the angle between the optical axis and z-axis in the x-z plane.
When ϕ = 30◦, the effective refractive index (neff) was 1.66 [27], and the absorption peak began to
degenerate. Asϕ increased to 40◦ (neff = 1.70), the degenerated absorption peaks already existed. In this
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range, the resonance was very sensitive to the refractive index change. We plot the absorbance change
along ϕ at 0.79 THz in Figure 4b. When the refractive index changed from no to ne, a 47% decrease
of absorption was achieved. The absorption was stable in the range of 0–30◦. Over 30◦, it changed
rapidly. This means that this absorber is suitable for measuring the refractive index in this range.
After 60◦, the absorption changed slowly again. Additionally, since the resonance is only sensitive to
the refractive index change along the incident polarization, the same LC embedded silicon pillar array
is suitable for THz wave polarization detecting as well through rotating the sample. Compared to
traditional broadband and frequency-tuning absorbers, our device presents the switchable absorption,
which was not revealed in the former investigations. It may benefit not only the THz absorbers but
also THz filters and sensors. Besides, if we set the pillar to some different radius, our design may
achieve a broadband absorption in a switched OFF state and some near-unity absorption at different
frequencies in a switched ON state.
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3. Conclusions

In summary, we introduced an active THz absorber composed of a silicon pillar array integrated
with LC. Through spatially reorienting the LC directors with bias, its absorption peak degenerated into
two small peaks, and the absorption at the resonance frequency half reduced. The proposed design
adds a new candidate beyond traditional broadband and frequency tuning absorbers. The switchable
absorption will benefit various applications such as energy harvesting and spatial light modulations.
Also, the polarization sensitivity of the proposed device may have potential in polarization detectors.
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