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We experimentally investigate the second-harmonic genera-
tion of a high-order Laguerre–Gaussian (LG) mode under
the quasi-phase-matching (QPM) configuration. First, we in-
troduce a simple method to observe the azimuthal (l ) and
radial (p) indices of the high-order LG modes. Based on
the astigmatic transformation technique, l and p are revealed
in the number of dark stripes of the converted pattern in the
focal plane. Then, using this efficient method of measure-
ment, we demonstrate in experiments a second-harmonic
LG mode with its radial and azimuthal indices being twice
those of the inputted fundamental wave through QPM in a
periodically poled KTP crystal. Our results provide a feasible
way to obtain simultaneously the LG modes with larger ra-
dial and azimuthal indices. © 2017 Optical Society of America

OCIS codes: (080.4865) Optical vortices; (190.2620) Harmonic

generation and mixing; (160.4330) Nonlinear optical materials.
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The Laguerre–Gaussian (LG) modes, characterized by the azi-
muthal index l and radial index p, have a well-defined orbital
angular momentum (OAM) of lℏ per photon [1]. This OAM
of a LG beam has been widely employed in optical tweezers
[2,3], optical manipulation [4], optical trapping [5], imaging
[6], and information processing [7–11]. Recently, LG modes
with a non-zero radial index have been demonstrated to possess
an apparent advantage over those with only azimuthal index in
several areas, such as optical manipulation [12,13] and optical
communication [14,15]. Moreover, the mirror of gravitational
wave (GW) detectors that use high-order LGmodes may be less
susceptible to thermal noise because of a wider power distribu-
tion than low-order modes [16]. As a result, research interest in
the radial LG modes has risen.

To date, there are several ways to produce directly high-or-
der LG beams, such as the Q-plate (QP) [17,18], spatial light
modulator (SLM) [19], fork grating [20], metasurface [21], spi-
ral phase plate (SPP) [22], and laser crystal [23,24]. Recently,

because of an increasing demand in practical applications for
LG beams to be converted to particular working wavelengths,
researchers have demonstrated second-harmonic generation
(SHG) [25–27], sum-frequency generation [28], third-har-
monic generation [29,30], high harmonic generation [31],
and spontaneous parametric down conversion [32,33] of LG
beams. Whereas the azimuthal index is conserved in most of
the nonlinear processes, the radial index can be conserved
[32,33] or non-conserved [34–36]. In this Letter, we examine
the higher order LG beams achieved in quasi-phase-matching
(QPM) SHG in a periodically poled KTiOPO4 (PPKTP)
crystal.

The measurement of a LG mode with zero radial index, i.e.,
an OAM mode, is a vibrant area of research. Generally, for
classical light beams, the interference scheme is the most popu-
lar. The OAM can be determined by counting the fringes gen-
erated in interference patterns produced when light interferes
with its own mirror image or a reference beam [37–39].
Moreover, OAM can be analyzed from converted patterns pro-
duced after the mode converter using single slits [40], double
slits [41], apertures of a special shape [42], cylindrical lenses
[43–45], or fork gratings [7]. Recently, a single plasmonic
nanohole was used to measure the OAM of an optical beam
in a simple nondestructive way [46]. However, little has been
reported on the radial index of a high-order LG mode [47].
Distinct from previous detecting methods, such as π∕2 mode
converter [48], we first demonstrate a method using a single
cylindrical lens to measure l and p, leading to a more compact
and efficient experimental setup.

In theory, the field focused by a cylindrical lens of focal
length f is obtained by solving the paraxial wave equation
for the collimated input beam at z � 0:

E�x; y� � E0e−r
2∕w2e−ilφ�−1�p�r ffiffiffi

2
p

∕w
�l Llp�2r2∕w2�: (1)

Here r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 � y2�

p
, φ � arctan�y∕x�, w is the beam

waist, l is the azimuthal index, p is the radial index, and Llp
denotes the generalized Laguerre polynomial of index p and l .
After passing the cylindrical lens (transmission function:
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where u and v are the orthogonal coordinates at the focal plane,
k is the wave vector, and λ the wavelength of the input beam.
The simulation results [Figs. 1(b) and 1(e)] of converted pat-
terns at the focal plane for LG modes with different l and p
[Figs. 1(a) and 1(d)] exhibit a two-dimensional array of bright
spots. In Fig. 1(b), the dotted lines are drawn to emphasize the
dark stripes in between the spots of the pattern. Similar to the
π∕2 mode converter, the mode indices l and p satisfy relations
l � m − n and p � minfm; ng. We find that l � 2, p � 1 for
Fig. 1(b) and l � 2, p � 2 for Fig. 1(e). Both simulation re-
sults confirm the relationship between (l , p) and (m, n).
Moreover, we also find that the tilt in the stripe indicates
the sign of the azimuthal index. In the focal plane of the cylin-
drical lens, the converted patterns of the LG modes with
�l and −l are mirror symmetric along the vertical direction.

To confirm the feasibility of this detecting method, we ob-
tained the converted patterns experimentally. In the experimen-
tal setup, the input light is derived from a 4 mW, 633 nm
He–Ne laser. Only a single cylindrical lens and a CCD is
needed to identify both radial and azimuthal indices. From
Fig. 1(c), the l and p of the incident LG beams are set to 2
and 1, respectively. The converted pattern obtained by the
CCD is similar to the corresponding pattern of simulations.
Moreover, the experimental results for LG22 [Fig. 1(f )] also
agree well with the simulated pattern in Fig. 1(e).

Next, we use this detection method to demonstrate the
conversion of the radial index in the SHG process. The setup
proposed to detect the radial index of the SH beams (Fig. 2)
uses a fundamental wave (FW) field generated by an optical
parametric oscillator (Horizon I-8572, Continuum Co.), which
is pumped by a nanosecond laser system with a pulse width of
about 6 ns and a repetition rate of 10 Hz. The wavelength can
be tuned from 400 nm to 2700 nm. In our experiment, the

input wavelength is set at 1064 nm, and the sample used is
a periodically poled KTiOPO4 (PPKTP) crystal of the size
10 mm�x� × 5 mm�y� × 0.5 mm�z�. The period of the struc-
ture is d � 8.95 μm. Here, the radial LG modes—those with
non-zero radial index—are generated by meta-QPs with radial
dislocations that act as half-wave plates with space-varying
optical axes and fabricated by photo-patterning birefringent
liquid crystals. In our setup, the first quarter wave plate
(QWP) changes the polarization of the input laser from linear
to circular. After passing the Q-plate, another QWP transforms
the polarization of the generated LG beam into linear polari-
zation along the z axis. With this configuration, the nonlinear
optical coefficient d 33 is involved, which is modulated in the
PPKTP crystal. After the fundamental beam is filtered out,
the SH beams pass the cylindrical lens, and the CCD records
the corresponding converted pattern.

For explicitness, we denote the state of the photon of
the fundamental beam by j~k1; l 1; p1 > with wave vector ~k1,
azimuthal index l1, and radial index p1 [49]. The SHG process
is expressible as

j~k1; l 1; p1 > �j~k1; l1; p1 >→ j~k2; l2; p2 > : (3)

Here, ~k2 and l 2 are the wave vector and azimuthal index, re-
spectively, of the SH beam, with p2 its radial index. The OAM
conservation law and the phase matching condition require

2~k1 � ~G1 � ~k2 2l 1 � l2; (4)

where ~G1 � 2π∕d is the reciprocal lattice vector generated
by the PPKTP.

From the experimental images recorded by the CCD
(Fig. 3), we first note that the FW is imprinted with
l 1 � 1, p1 � 1. The observed FW and SH intensity patterns
[Figs. 3(a) and 3(c)] both feature distributions with multiple
rings, their number being 2 and 3, respectively. After passing
the cylindrical lens, the converted patterns of the FW and SH
[Figs. 3(b) and 3(d)] are quite different. As introduced above,
by counting the dark stripes in the converted patterns, the ra-
dial and azimuthal indices of the SH are both 2 [Fig. 3(d)]. It
should be noted that the number of the rings may also indicate
the radial index of the LG modes. For example, three rings nor-
mally indicate p � 2. However, the low intensity of the outer
ring of the SH signal in our experiment [Fig. 3(c)] may lead to a
misreading of the ring number. If using the single cylindrical
lens method, the converted pattern presents clearer results,
which makes it a better method in the determination of the

Fig. 1. Simulated intensity pattern of radial LG modes (a) l � 2,
p � 1 and (d) l � 2, p � 2. Converted patterns of radial LG modes
obtained from (b), (e) simulation and (c), (f ) experiment.

Fig. 2. Schematic of the experimental setup. PBS, polarized beam
splitter; QWP, quarter wave plate.
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radial index under such kind of circumstance. To further test
the radial index conversion in the QPM SHG process,
we changed the input azimuthal and radial indices to
l 1 � 2 and p1 � 1 [Figs. 3(e) and 3(f )]. The l and p of the
corresponding SH beams are then 4 and 2, respectively
[Figs. 3(g) and 3(h)].

When we tune for l1 � 1 and p1 � 2 [Fig. 4(a)], the SH
LG modes with l 2 � 2 and p2 � 4 are obtained [Fig. 4(b)].
Compared with the well-defined patterns in Figs. 3(d) and
3(h), the imperfect quality of the converted pattern in
Fig. 4(d) may be caused by the relatively low purity of the
FW with a high radial index [22]. Nevertheless, from this
converted pattern, we conclude that with our setup, LG modes
with radial index twice that of the FW dominate the SH,
which means the radial index is conserved in the QPM
SHG process. The experimental results are consistent with
previous theoretical predictions [35].

In conclusion, we have demonstrated a simple method using
a single cylindrical lens to determine the radial index of the
radial LG modes with non-zero p. The results of simulation
are consistent with the experimental results. Moreover, we have
applied this method to analyze the radial index conversion in

the QPM SHG process. The radial index of the SH beams was
twice that of the FW. Therefore, the nonlinear optics method
presented here can be used to generate higher order LG modes
of different frequencies. The increase in the degrees of free-
dom for light beams, i.e., azimuthal index, radial index, and
wavelength, will lead to possible applications in optical
communications.
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