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Tailoring the photon spin via light–matter interaction in liquid-
crystal-based twisting structures
Yang Ming1, Peng Chen1, Wei Ji1, Bing-yan Wei1, Chun-hong Lee2, Tsung-hsien Lin2, Wei Hu1 and Yan-qing Lu1

We demonstrate the photonic spin Hall effect in a system comprising designable liquid crystal materials. The photoalignment
technique provides an effective approach to control the directors of the liquid crystal molecules. Twisting structures with different
transverse distributions are conveniently introduced into the liquid crystal plates for tailoring the spin–orbit coupling process to
present various photonic spin Hall effect phenomena. The light–matter interaction in the twisting mediums is described with a
Schrödinger-like equation. The photonic spin Hall effect considered in the study is explained as the result of an effective magnetic
field acting on a pseudospin. Moreover, owing to the designability of the liquid crystal system, it is a potential platform for
Hamiltonian engineering. Several valuable multiple quantum systems are possible to be presented in classical analogies.
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INTRODUCTION
Spintronics becomes an attractive field of condensed matters in
recent years and shows its immense potential in quantum
information applications.1, 2 Various spintronic devices have been
demonstrated to play important roles in quantum information
processing and quantum computation.3, 4 The central theme of
spintronics is manipulation of the spin degrees of freedom. The
spin Hall effect (SHE) provides an effective approach for
controlling the electron spin, and a large number of interesting
investigations have been demonstrated.5, 6 Although considerable
progress has been made, the electronic systems always face the
problem of decoherence and decay.7 In this aspect, the photonic
quantum system has obvious advantages. Moreover, the photon is
also an ideal spin carrier. The discovery of photonic spin Hall effect
(PSHE) provides a powerful approach for controlling and
manipulating the spin photons.8 Therefore, the photonic systems
can be alternative choices for designing spin-based devices, thus
raising an increasing research interest.7, 9–23

The liquid crystal (LC) is a special state of certain matter that is
intermediate between the crystalline solid and the amorphous
liquid.24 Owing to its unique optical properties, the LC has been
widely used for liquid crystal display and changes our daily life.
Upon the development of novel manipulating techniques, the
potentiality of LC materials in fabricating photonic devices is
continuously released, and the tunable characteristic becomes an
advantage of the LC-based devices.24 In this work, we investigate
the PSHE via light–matter interaction in LC-based twisting
structures which are made through the photoalignment techni-
que.25, 26 The physical mechanism of such a system is discussed in
detail. The light–matter interaction in the LC medium is described
by the Maxwell–Schrödinger equation,27, 28 and the interaction
Hamiltonian is obtained and shown to be similar with those of the
Rashba and Dresselhaus types of electronic systems. Owing to the
photoalignment technique, it is convenient to control the LC
directors locally,25, 26 and thus the spin–orbit interaction process

in the LC twisting structures can be flexibly tailored to present
various PSHE phenomena. As regards the experimental verifica-
tion, we prepare several representative samples, and the obtained
results are consistent with our theoretical analyses. The value of
the LC-based systems in designing photonic quantum devices is
further discussed. The redistribution of photon spin is controllable
through manipulating the distributions of LC directors, which
offers a way to manipulate the photonic spin states. It provides a
potential platform for Hamiltonian engineering, thus more
valuable multiple quantum systems are possible to be presented.

RESULTS
For PSHE, several types of systems have been demonstrated, and
the corresponding mechanisms are respectively different. In our
system, the proposed PSHE is the result of an effective “magnetic
field” acting on a pseudospin. The pseudospin vector is defined
according to the Stokes parameters;29 the values of its three
components correspond to S1, S2, and S3, respectively, while S0
denotes the normalized vector modulus. The effective magnetic
field (or pseudo-magnetic field) is provided by the LC-based
inhomogeneous medium. The orientation of the local optical axis
can be suitably controlled to form special transverse distributions
with a “twisting” feature for effective spin-to-orbital angular
momentum conversion,30, 31 and thus the pseudo-magnetic field
is driven to become helical due to the strong spin–orbit
interaction. Tailoring the transverse distribution can result in
different pseudo-magnetic fields for realizing various PSHE
phenomena. A classical distribution involves varying the orienta-
tion of the optical axis linearly with the azimuthal angle. The
structure that achieves such a variation is known as the q-plate.31

In addition, other distributions with non-uniform azimuthal
changes and/or additional radial changes are also investigated
and demonstrated in our study.
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The Stokes vector is associated with the polarization state of the
photon. To study the evolution of the Stokes parameters, we
begin from the Schrödinger-like equation for polarized light,
which could be obtained through a simple transformation of the
Jones matrix equation as32

iγ
dψ
dz

¼ Ĥψ: ð1Þ

In this equation, γ is equal to 2/k0Δn, and Δn denotes the
birefringence of the LC material. The 2 × 1 row vector ψ
representing the polarization state is expressed as ψ = [ψ+, ψ-]

T =
ψ+e+ + ψ-e-, where e± denotes the basis of circular polarization. For
the interaction Hamiltonian H, according to the hermiticity, its
general form is H = [ζ, ε − κi; ε + κi, ζ]. In our system, the
parameters are calculated to be ε ¼ cos ½2αð r!Þ�; κ ¼
sin ½2αð r!Þ�; ζ = 0, thus we have

H ¼ 0 cos ½2αð r!Þ� � sin½2αð r!Þ�i
cos ½2αð r!Þ� þ sin½2αð r!Þ�i 0

" #
:

ð2Þ
In this equation, αð r!Þ denotes the angle between the

transverse-position-dependent optical axis and the system coor-
dinate axis. Through a simple transformation, the Hamiltonian
corresponding to Eq. (2) can be expressed as

H ¼ σ!� Ω!eff

¼ σ1Ω1 þ σ2Ω2;
ð3Þ

where

Ω
!

eff ¼ ðΩ1; Ω2; Ω3Þ ¼ ðcos½2αð r!Þ�; sin½2αð r!Þ�; 0Þ: ð4Þ
In the equations above, σ! is the Pauli matrix vector, while Ω

!
eff

represents the effective magnetic field. It is obvious that Ω
!

eff is
directly related to the distribution of the angle α. Three typical
examples depicting the αð r!Þ functions are shown in Fig. 1.
Figure 1a–c are plots of 2αð r!Þ, while Fig. 1d–f describe the
corresponding effective magnetic field. The function α in Fig. 1(a)

is given as α(r, φ) = 0.5φ. In this case, the orientation of the
effective field changes regularly with respect to the angle α, as
shown in Fig. 1(d). Moreover, if the azimuthal variation of α is non-
uniform with the expression α(r, φ) = 2φ·H(φ − π)H(2π − φ)+10φ·H
(φ)H(π − φ) (H(φ) represents the Heaviside step function) (Fig. 1b),
the orientation distribution of Ω

!
eff is driven to be different in the

respective angular regions (Fig. 1e). Besides variation along the
azimuthal direction, a radial discontinuity can be introduced into
αð r!Þ, as is the case in Fig. 1c. The relevant formula in this case is α
(r, φ) = 1.5φ + 0.5π·H(r − r0) (r0 = 260 μm), and the orientations of

Ω
!

eff corresponding to the same polar angle in the two circular
regions are opposite (Fig. 1f). The redistribution processes of
photon spin are driven to be distinct according to different αð r!Þ.
The form of the interaction Hamiltonian for the LC-based PSHE
system is similar with those of the intrinsic electronic SHE systems,
but the detailed forms are different. As a result, the corresponding
properties and phenomena have clear differences. In electronic
systems, the main contributions to the interaction Hamiltonian are
the Dresselhaus and Rashba terms. Due to the characteristics of
the solid electronic systems, it is relatively hard to change the form
of Hamiltonian in a specific system by certain methods. In our
system, the critical factor of the interaction Hamiltonian is the
distribution function αð r!Þ. It is easy to control the form of
Hamiltonian through tuning the αð r!Þ. Correspondingly, various
PSHE phenomena can be presented with our LC twisting
structures. Previously, the optical SHE has been demonstrated in
the exciton scattering systems, which is the result of the coherent
precession of the photon pseudo-spin about a wave vector
dependent effective magnetic field.7, 17 In the present work, the
effective magnetic field is dependent of the spatial distribution of
the LC directors, thus is tunable in the transverse plane.
The effective magnetic field Ω

!
eff originating from the spin-orbit

interaction drives the pseudospin vectors to realign for forming
the spin-dependent splitting effects. In our system, the pseudos-
pin corresponds to the Stokes vector, so its precession can be
intuitively described within the Poincaré sphere. The points on the
sphere surface represent different pseudospin states. For an

Fig. 1 Illustrations of the αð r!Þ functions that describe the distributions of the optical axis. The corresponding expressions of αð r!Þ are a α(r,φ)
= 0.5φ, b α(r,φ)= 2φ·H(φ − π)H(2π − φ)+10φ·H(φ)H(π − φ), and c α(r,φ)= 1.5φ+0.5π·H(r − r0) (r0= 260 μm). The spin–orbit interaction processes are
tailored correspondingly to form different effective magnetic fields (d–f), which drive the pseudospin to present respective PSHE patterns
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optimal spin-dependent splitting phenomenon, the initial state
should be located on the equator of the Poincaré sphere denoting
a linear superposition of σ+ and σ- states with equal probability
amplitude, which indicates linearly polarized incident light. The
direction of the effective magnetic field also lies in the x–y plane,
and thus, the pseudospin vectors deviate from the equatorial
plane and move towards the two poles under its influence. Further
details can be obtained via the evolution equation for pseudospin,
which is derived from Eq. (1). The components of the pseudospin
vector, i.e., the Stokes parameters, can be expressed as average
values of the Pauli matrices, namely, Si ¼ ψyσiψ (i = 1, 2, 3).28 Using
the commutation relation for the Pauli spin, [σ1, σ2] = 2iσ3 (and
cyclic permutations),20, 27 the equation is deduced to be

ν
d S
!
dz

¼ S
!

´ Ω
!

eff ; ð5Þ

wherein we set ν = γ/2. For simplification, the incident light is set
to be horizontally polarized which is parallel to the x-axis. The
direction of the effective magnetic field is anisotropic and
dependent of the azimuthal angle. The redistribution of photon
spin is controlled by Ω

!
eff . If Ω

!
eff lies along the clockwise direction

of S
!ðΩ!eff � êy<0Þ, the pseudospin state should change towards

the σ- state; on the contrary, when Ω
!

eff lies along the counter-
clockwise direction of S

!ðΩ!eff � êy>0Þ, the corresponding state
changes oppositely and tends to the σ+ state. From Eqs. (1) and
(2), it can be clearly observed that the off-diagonal elements of the
Hamiltonian are different, and thus the σ+ and σ- states experience
asymmetric interaction processes in the mediums. Based on such
a mechanism, a splitting effect is expected to occur between the
σ+ and σ- components of the output light. Moreover, as Ω

!
eff

exhibits multifold rotational symmetry according to the coefficient
q of the azimuthal coordinate, deduced from Eq. (5), the
phenomenon of PSHE is supposed to present the characteristics
of multiple azimuthal splitting. For a more distinct description, Eq.
(5) is further solved, and analysis formulae of the pseudospin are
obtained. Among the three components of S

!
, S3 which is

associated with the helicity (or handedness) of light directly
depicts the splitting between the σ+ and σ- states.21 The
corresponding evolution equation is obtained through Eq. (5) as

d2S3
dz2

þ 1
ν2

S3 ¼ 0: ð6Þ

For horizontally polarized incident light, the initial condition is
S1 = 1, S2 = S3 = 0. The equivalent length of the LC-based twisting
medium is π/2k0Δn. Substituting these parameters into Eqs. (5)

and (6), the expression for S3 is derived as

S3 ¼ ξ2jE0ðr;φÞj2 sin½2αðr; φÞ�: ð7Þ
Here, E0(r, φ) describes the transverse profile of the pump field,

and ξ denotes the corresponding normalization parameter. Based
on Eq. (7), considering the simplest case with α(r, φ) = 0.5φ, the
output light is expected to result in two states corresponding to
the σ+ and σ- components, respectively. As the coefficient q
becomes larger, the number of splitting states should also
increase. According to the symmetry of the system, this number
can be predicted to be 4q. These states correspond to the σ+ and
σ- components, respectively, and they distribute along the
azimuthal direction in turn. If the function α(r, φ) becomes more
complex, the distribution of the states is further modulated.
Through controlling the formula of α(r, φ), various PSHE patterns
could be observed.
To demonstrate the intrinsic PSHE, we perform experiments

based on the set-up shown schematically in Fig. 2. A continuous-
wave laser at 671 nm is utilized as the pump light. After passing
through the polarizer (P1), it is transformed into linearly polarized
light. A half-wave plate is used for modulating the polarization
direction. The samples with LC-based twisting structures are
prepared by means of digital micro-mirror device (DMD) based
micro-lithography,25, 26, 33 whose micrographs are shown in the
left column of Fig. 3a–d]. The corresponding formulae of α(r, φ) for
each of the illustrated cases are α1(r, φ) = 0.5φ, α2(r, φ) = 1.5φ, α3(r,
φ) = 2φ·H(φ − π)H(2π − φ) + 10φ·H(φ)H(π − φ), and α4(r, φ) = 1.5φ +
0.5π·H(r − r0) (r0 = 260 μm), respectively. Beyond the twisting
medium, a combination of a quarter-wave plate and a polarizer
(P2) is positioned for measuring S3, and the output light is
detected by a CCD camera. The experimental results are shown in
Fig. 3e–h. As the CCD camera locates in the far-field, the
measurement distributions actually correspond to the Fourier
transforms of those in the near-field. Combining the Fourier
theory and the theory discussed above, the theoretical results are
obtained and shown in Fig. 3i–l. It is seen that the observation
results are in excellent agreement with the calculations.
When the distribution of the optical axis is α1(r, φ) = 0.5φ, two

states are observed Fig. 3e and i, which originate from the splitting
of the σ+ and σ- components. In comparison with the PSHE on the
interface between two conventional dielectrics,9–11 there is an
increase in the displacement of splitting owing to the inhomo-
geneity of the spin–orbit coupling system.21 Moreover, through
tailoring the inhomogeneity to present the twisting feature, the
phenomenon of PSHE is enhanced and the number of the splitting
states is not limited to two. For α2(r, φ) = 1.5φ, the splitting states
form a pattern of a flower with six petals (Fig. 3f and j). The system

Fig. 2 Experimental set-up for PSHE measurement. A continuous-wave (CW) pump laser (671 nm) passes through the polarizer (P1) and
becomes linearly polarized light. The half-wave plate (HWP) is used for modulating the polarization direction. Spin–orbit interaction processes
in the LC twisting samples result in the PSHE phenomena. The pseudospin is measured with a combination of a quarter-wave plate (QWP) and
a polarizer (P2). The output patterns are detected by a CCD camera
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exhibits a C3 rotational symmetry. In the case of α3(r, φ) = 2φ·H(φ −
π)H(2π − φ) + 10φ·H(φ)H(π − φ), the splitting pattern shows sym-
metry breaking arising from the azimuthal asymmetry character-
istic (Fig. 3g and k). Twenty states distribute in the upper half
space, while four ones distribute in the lower half. For further
consideration, we introduce radial variation into the function α as
α4(r, φ) = 1.5φ + 0.5π·H(r − r0). The subsequent distribution of states
becomes increasingly complex (Fig. 3h and l). There are six states
located both within and outside of the dislocation ring. As the
directions of the effective magnetic field for r < r0 and r > r0 with
the same azimuthal angle are opposite, the two splitting states
along one radial orientation correspond to the σ+ and σ-

components, respectively. Through designing the distribution of
the optical axis, tunable PSHE with any desired splitting pattern
could be realized.

DISCUSSION
Owing to the characteristics of photonic systems, the transverse
splitting is complete only in certain cases, so it is necessary to
investigate the intensity of PSHE quantitatively. In the present
system, we consider that the intensity of the PSHE is better to be
measured by the splitting degree of the σ+ and σ- light spot. It is
influenced by two aspects. For one aspect, the coupling process is
critical. Owing to the periodic characteristic of the photonic
systems in the longitudinal direction, the splitting degree does not
increase with the coupling constant linearly, which differs from

the situation in the electronic systems. The maximum is obtained
when the relative phase retardation is equal to π/2. This point is
determined by the thickness of the sample and the coupling
constant k0Δn/2 in the Schrödinger-like equation jointly. For the
other aspect, it should be referred to the function αð r!Þ. As the
observation is carried out in the far-field, that is to say that the
splitting is measured in reciprocal space. We choose the spin-
dependent shift of wave vector Δ k

!
to describe the splitting

degree (The first condition is set to be optimal). The expression is

Δ k
!¼ Δ k

!
r þ Δ k

!
φ ¼ �σ ± ð∂α

∂r
êr þ ∂α

∂φ
êφÞ: ð8Þ

When the distribution function is α(r, φ) = qφ + α0, the Δ k
!

is
derived to be Δ k

!
φ ¼ �σ ± qêφ ðΔ k

!
r ¼ 0Þ: The splitting in the real

space can be acquired by the equation

Δ k
!

k
!

�����
����� ¼ Δ r!

r!
����

����: ð9Þ

We can see that the splitting becomes larger with the value of q.
This point can also be confirmed in the case α(r, φ) = 2φ·H(φ − π)H
(2π − φ) + 10φ·H(φ)H(π − φ). From the measured pattern, it is
obvious that the splitting corresponding to the portion of q = 10
is larger than that of q = 2. In addition, in the case α(r, φ) = 1.5φ +
0.5π·H(r − r0), we have Δ k

!
r ¼ �0:5πσ ± � δðr � r0Þêr . As a result,

the splitting appears in the radial direction.

Fig. 3 Micrographs of four representative samples with the distribution functions of optical axis as a α1(r, φ)= 0.5φ, b α2(r, φ)= 1.5φ, c α3(r, φ)
= 2φ·H(φ − π)H(2π − φ) + 10φ·H(φ)H(π − φ), and d α4(r, φ)= 1.5φ + 0.5π·H(r − r0), respectively. It is obvious that the measured PSHE patterns (e–h)
are in excellent agreement with theoretical simulations (i–k). For α1(r, φ) and α2(r, φ), the number of splitting states is equal to 4q (q= 0.5 or
1.5), and these states locate along the azimuthal direction regularly. In the case of α3(r, φ), twenty states are on the upper half plane while four
ones are on the lower half. If an additional circular discontinuity is introduced in as α4(r, φ), there are both six states locate within and outside
of the circle. The two states in one radial orientation correspond to the σ+ and σ- components, respectively
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In fact, more than the tunable PSHE, the LC-based systems
possess greater value for quantum photonic applications. A direct
consideration is to engineer the Hamiltonian. In several quantum
information applications, controlling the evolution of the quantum
systems is an important task. This can be carried out through
appropriate Hamiltonian engineering. In the LC-based photonic
systems, referring to Eq. (2), the form of interaction Hamiltonian is
determined by the function αð r!Þ. Utilizing photo-alignment
technique, the function αð r!Þ can be flexibly steered, thus it is
easy to realize the local and fine tuning of the interaction
Hamiltonian. That is difficult to achieve previously. A representa-
tive example is the programmable optical vortex lattice.34, 35

Choosing αð r!Þ to be an appropriate periodic function, the LC
medium can be designed for the analog of an arbitrary two-
dimensional crystal lattice. If the considered system is more
complex, we can divide it into small elements and tailor the
corresponding sub-Hamiltonians, respectively. The control task of
the entire system is realized through contenting the engineered
sub-Hamiltonians in series. A useful application is the quantum
random walk based on the spin–orbital angular momentum space
of photons.36, 37 In such systems, the spin states of photon play
the role of the coin in the typical model of discrete-time quantum
walk. The spin–orbit coupling process in the q-plate is utilized for
Hadamard operation together with suitable modulations provided
by waveplates, thus the spin coin is tossed to determine how a
step is taken. The walk of a photon is presented through increase
or decrease in the orbital angular momentum (OAM). The change
of OAM is ±ħ for one step. The quantum walk can be implemented
step by step. The technique of Hamiltonian engineering opens
possibilities for simulating the dynamical evolution of certain
valuable multiple quantum systems.
In conclusion, we have demonstrated the photonic SHE based

on spin–orbit coupling in LC-based twisting structures. The
pseudospin states of photons are driven to split by the anisotropic
effective magnetic field arising from the inhomogeneous
light–matter interaction process in the LC medium. The interaction
Hamiltonian of such a system is shown to be similar with that of
the intrinsic SHE in electronic systems. Owing to the micro-
lithography technology based on DMD device, the distribution of
the directors of LC molecules could be designed with very high
flexibility, thus the spin–orbit coupling process in the twisting
mediums could be arbitrarily tailored to present various PSHE
phenomena. Four representative samples are prepared for
experimental observation, and the results are in excellent
agreement with theoretical predictions. The tunable LC system
may provide a potential platform for controlling the redistribution
of photon spin and shed new light on photonic quantum
simulations.

METHODS
The samples are fabricated through the following method. The LC material
we used for the samples is the sulphonic azo-dye SD1 (Dai-Nippon Ink and
Chemicals, Japan). The director of LC molecule which corresponds to the
optical axis can be locally controlled through several techniques. In the
present work, we choose the photoalignment technique. Through suitably
controlling the exposure process, the distribution of the LC directors can
be flexibly desiged to form the twisting microstructures.
The details about preparing the samples are as follows: The first

procedure is to fabricate the LC cells. Indium-tin-oxide coated glass
substrates are ultrasonic bathed, UV-ozone cleaned and then spin-coated
with 0.5% solution of sulphonic azo-dye SD1 in dimethylformamide, and
then the LC cell is infiltrated with LC mixture E7. Following, the photo-
alignment technique is applied to obtain the twisting microstructures.
Spurt 6 μm spacers over one substrate then put the counter substrate over
it. The two substrates are assembled together and sealed by epoxy glue.
Afterwards the cell was placed at the image plane of the DMD based
microlithography system to record the designed patterns, which
correspond to the desired distribution function αð r!Þ. Each area is

exposed with a dose of ca. 1 J/cm2 each time, and after the eighteen-
step five-time-partly-overlapping exposure with a total exposure dose of 5
J/cm2, a quasi-continuous space-variant orientation of SD1 was carried out.
After LC capillarily filled, the samples with various twisting microstructures
are achieved.
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