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Entanglement of photons with complex spatial structure in Hermite-Laguerre-Gaussian modes
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Photons with complicated spatial mode structures can be applied for different quantum information tasks. Here,
we show the entanglement of photons with complex singularity patterns called Hermite-Laguerre-Gaussian (HLG)
modes. Measuring one photon of the entangled pairs by HLG mode basis to define its singularity pattern, we
can steer the singularity structure of its partner, while the initial singularity structure of the photons is undefined.
We also calculate the HLG specific quantum-correlation function. It can be used to extend the quantum key
distribution protocols and to tune experiments dealing with high-order transverse modes. In addition we discuss
orbital angular momentum properties of the HLG modes and summarize some features of the singularity pattern
of the HLG modes with varying angle parameter.
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I. INTRODUCTION

Quantum entanglement plays an important role in the
fundamentals of quantum mechanics [1]. It is also widely
used in the area of quantum information, for example,
in quantum teleportation [2], quantum computation, and
quantum cryptography [3]. Photon pairs may entangle in
various degrees of freedom, such as polarization [4,5], time
and energy [6], frequency [7], path [8], and transverse
mode [9,10]. Additionally, entanglement of photons also
extends to spatial modes of the electromagnetic field carrying
orbital angular momentum (OAM) [11,12], which can be
used to define an infinitely dimensional discrete Hilbert
space and provide a practical route to entanglement that
involves many orthogonal quantum states, instead of only
two-dimensional entangled states. These entangled states with
OAM make communication channels in quantum informa-
tion more efficient and observably increase the transmission
capacity [13].

The Laguerre-Gauss (LG) modes are a series of spatial
modes carrying an OAM and have attracted much attention
in several theories and experiments, such as two-dimensional
entanglement of large quanta of OAM [14], multidimensional
entanglement and cryptography [15], and entanglement of
three-dimensional structures or quantum communication in
free space [16]. The mode LGp,l depends on two mode
numbers, p and l. p is the number of radial nodes in
the intensity distribution, which means the beam comprises
p + 1 concentric rings with a zero on-axis intensity in
the intensity cross section, and l is the azimuthal index
meaning that each photon carries an OAM of l� [17]. l is
also called the topological charge of the phase singularities,
and measures the strength of a net change of phase in a
circuit enclosing the vortex. For LG modes with azimuthal
index l, it seems that all singularities “merge” into a single
isolated (l-fold degenerate) optical null at the center of the
vortex [18].
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Here, we concentrate on spatial modes that have more
complex vortex distribution and singularity patterns called the
Hermite-Laguerre-Gaussian (HLG) modes [19], which are a
structurally stable solution of the paraxial wave equation as
well. They have an additional continuous angle parameter α

and each value defines a different set of orthonormal basis. The
Hermite-Gauss (HG) modes emerge as a special case for α =
0, and LG modes emerge when α = π/4. Starting with LG
modes as a special condition of HLG modes, when the angle
parameter varies, it is accompanied by the splitting of merged
singularities into l separate ones with unit topological charge,
which constructs the specific phase and the intensity patterns.
By changing the angle parameter and topological charge (the
difference between two transverse mode numbers), the spatial
distribution and the number of phase singularities can be well
controlled [20]. In the famous EPR gedanken experiment,
for a two-particle entangled state [21], the measurement of
an observable of either particle determines the value of that
observable for the other particle with unit probability. Here,
we present an investigation with HLG modes in the quantum
entanglement regime. In our discussion, a measurement of
a specific singularity pattern on one photon defines the
singularity pattern of the other one distantly, which implies the
nonlocality involved in the operation. As HLG modes carry a
fractional value of OAM, quantum-correlation properties of
different angular momentum states with fractional values are
also discussed.

In the following section, we briefly introduce the HLG
modes and review some results on the correlation among
general transverse modes of the pump, signal, and idler photon.
Then, we simulate the coincidence counts rate between two
first-order HLG modes and two high-order HLG modes,
respectively, to reveal the entanglement properties involved
in these modes with complex singularity patterns. We also
calculate the correlation function between biphotons projected
on high-order HLG modes with the same transverse mode
number but a different angle parameter α. Steering by this
angle parameter might be useful in quantum information proto-
cols. In addition, we focus on the nonclassical OAM properties
of the HLG modes and discuss the distinction conservation law
of OAM between integral and fractional conditions. Finally,
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we summarize some features of the singularity pattern of HLG
modes on varying the angle parameter for completeness.

II. HERMITE-LAGUERRE-GAUSSIAN MODES

It is well known that beam families such as HG beams
or LG beams play an important role in resonators and
optical waveguides. As a structurally stable solution of the
paraxial wave equation, each of them is the basis for the space
L2(R2) (two-dimensional plane), and thus can be transformed
mutually [22]. In 2004, Abramochkin proposed a unity of HG
and LG beam families by introducing an additional parameter
that keeps many properties of both families; these were called
the Hermite-Laguerre-Gaussian modes.

Using the Cartesian coordinate system and assuming the z

axis to be the propagation axis, the HLG beam in the z = 0
plane can be expressed as [19]

Gn,m(x,y|α)

= exp(−x2 − y2)
n+m∑
k=0

ikcosn−kαsinm−kα

×P
(n−k,m−k)
k [− cos(2α)]Hn+m−k(

√
2x)Hk(

√
2y), (1)

where P
(μ,ν)
k (t) is the Jacobi polynomial and Hn(x) =

(−1)nex2 dn

dxn e
−x2

is the nth-order Hermite polynomial. n and
m are the transverse mode numbers in the x and y direction,
respectively. α is the introduced angle parameter which allows
a continuous transformation between HG modes and LG
modes, and considering the periodicity, its value is often taken
to be from 0 to 2π . For any fixed α, m and n can take
any integer, and they belong to a new family that is also an
orthogonal basis of the space L2(R2), and they thus define an
infinite-dimensional Hilbert space. When α is equal to 0, the
HLG beam reduces to a HG beam. When α is equal to π/4,
the HLG beam transforms to a LG beam. It is seen that

G(x,y|0) = (−i)mHn,m(x,y), (2)

FIG. 1. Hermite-Laguerre-Gaussian mode G4,2(x,y|α) with
varying angle parameter, where α ∈ [0,π/4]. The intensity (or phase)
distribution of each mode is shown in the upper (or lower) row. From
left to right, the values of α are an arithmetic progression. From right
to left, the splitting of the central phase singularity on a horizontal
line can be observed as well as the creation of additional pairs of
singularities in the ring of zero intensity. For α = 0, the HLG mode
becomes the HG mode, which remains only a rectangular symmetry;
for α = π/4, the HLG mode becomes the LG mode, which has a
rotational symmetry.

and

Gn,m

(
x,y

∣∣∣π
4

)
=

{
(−1)m2nm!Lm,n−m(x,y) (n � m)
(−1)n2mn!Ln,m−n(x, − y) (n � m) .

(3)

This transition can be seen in Fig. 1.

III. TWO-DIMENSIONAL ENTANGLEMENT AND
QUANTUM-CORRELATION FUNCTION

A. Parametric process

We still employ spontaneous parametric downconversion
(SPDC) in a nonlinear crystal to generate entangled photon
pairs. A typical material considered here is periodically poled
lithium niobate (PPLN), where the quasi-phase-matching
(QPM) technique is applied through suitable modulation of
nonlinear susceptibility to get high conversion efficiency
[23,24]. Using its largest nonlinear coefficient d33, the two
downconverted photons have different frequencies and we can
split them with a dichroic mirror. We treat the pump wave
classically and use the approximation that the amplitude is
spatially constant. Based on the rotating wave approximation,
we obtain HSPDC as

HSPDC

= −�d33Ep

2

∫∫
dωsdωi

[
G1h(L�

⇀

k)
√

ωsωi

n2
s n

2
i NsNi

×Fa†
s a

†
i e

−i(ωp−ωs−ωi)t + H.c.

]
, (4)

where �
⇀

k=
⇀

kp −
⇀

ks −
⇀

ki − 2π/� is the phase mismatch for
the first-order QPM and G1 is a corresponding Fourier
coefficient, and � is the period of the QPM structure in the
propagation direction. Ns , Ni are normalization parameters
and ns , ns are the refractive indices. Ep is determined by the

pump field. The value of h(L�
⇀

k) is from the function of the
form h(x) = exp(−ix/2) sin c(x/2). F = ∫∫

d2⇀

r	p	∗
s 	

∗
i is

the overlap integral of the normalized transverse mode profiles.
Starting from a vacuum input, the two-photon state is derived
as

|ψ〉 = − i

�

∫ ∞

−∞
dtHSPDC(t)|0〉

=
∫

dv�Fa†
s a

†
i |0〉, (5)

where � = (id33Ep/2)G1h(L�
⇀

k)
√

ωsωi/n2
s n

2
i NsNi . The fre-

quency integration based on ωi could be eliminated due
to the temporal integration

∫
exp[−i(ωp − ωs − ωi)t] =

δ(ωp − ωs − ωi). Here we set ωs = 
s + v, in which 
s is
the perfect phase-matching frequency, and v is the natural
bandwidth.

As we are concerned with the transverse mode correlation
implied in the overlap integral F, it is reasonable to assume that
the conditions imposed by the nonlinear susceptibility and the
QPM condition in � are always satisfied. Moreover, we ignore
the influence due to the bandwidth of photons. Therefore,
the two-photon state in the position representation takes the
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form [25]

|ψ〉=
∫

d �xs

∫
d �xi	p

( �xs + �xi

2

)
�(�xs − �xi)â

†
s (�xs)â

†
i (�xi)|0〉.

(6)

The count rates of coincidence measurements are propor-
tional to the probabilities of detecting a photon of the signal
or idler in a specific mode, which can be calculated through
projection operation of state vectors. Then, the normalized
coincidence probability is given by

PN (	i,	s)

= |∫ d �X	∗
i ( �X)	∗

s ( �X)	p( �X)|2√∫
d �X|	∗

i ( �X)	p( �X)|2
√∫

d �X|	∗
s ( �X)	p( �X)|2

. (7)

The probability becomes 1 if the signal and idler are
perfectly correlated, and vanishes if the signal and idler are
anticorrelated. For other conditions, it takes values between 0
and 1. Moreover, the state of the idler photon collapses into
|ψi〉=〈ψs |ψ〉 if we detect the biphoton state with a signal
photon in the mode |ψs〉; thus the mode function of the idler
can be expressed as

	2 = C	0	
∗
1
. (8)

The factor C ensures the normalization of the idler mode.
These relationships are valid for any transverse mode function.
In the next section, we concentrate on the HLG mode basis
states by substituting mode function with specific transverse
mode number and angle parameter.

B. Two-dimensional entanglement of the first-order
HLG modes

In our designed scheme (Fig. 2), SPDC in the PPLN is
employed to generate a biphoton, which has been discussed in
the previous section. We split the photons with a dichroic beam
splitter (DBS). In the two arms of the light path, a combination
of spatial light modulators (SLMs) and single-mode fibers
plays the role of a specific-mode spatial filter. Using computer-
generated holograms, specific diffraction patterns load on the
SLMs, which allows a desired high-order mode photon to
convert into a Gaussian mode and couple into a single mode
fiber (SMF). Then, avalanche photodiodes collect the delivered
photons and a coincidence count takes place.

FIG. 2. Sketch of designed scheme. A PPLN crystal is employed
to generate entangled photon pairs. We separate the biphoton with a
dichroic beam splitter and convert the HLG mode into a Gaussian
mode by SLMs. Then, the photons are coupled into SMFs and
detected with avalanche photodiodes.

We first analyze the first-order HLG modes. It is known
that any state of complete polarization can be described as
a point on the Bloch sphere for the polarization, which is
represented as a superposition of left- and right-handed circular
polarizations. As an analogy to this, the same geometrical
approach can be applied to construct a Bloch sphere for the
representation of states within any two-dimensional subspace
[26,27], with two basis elements LG0,1 and LG0,−1 at the
poles, respectively. All the stable beam modes of order 1 can
be represented as the superposition of LG0,1 and LG0,−1; thus,
there is a one-to-one correspondence between every point on
this Bloch sphere and every mode of order 1. In general terms,
a state |�a〉 can be written as

|�a〉 = cos

(
θa

2

)
|l〉 + eiφa sin

(
θa

2

)
|−l〉, (9)

where �a is a vector pointing to a specific first-order mode.
θa and φa are the polar angle and the azimuthal angle,
respectively. The order of HLG modes is N = n + m, which
is independent of the angle value α. The Bloch sphere gives a
visual representation of first-order HLG modes with different
values of α. When a left-handed circularly polarized light is
transformed to a linear polarization with a quarter-wave plate,
it can be represented by a move from the north pole to a
point on the equator, the azimuthal angle of which depends on
the orientation of the linear polarization. When representing
states on the Bloch sphere, the cylindrical lens mode converters
transform the transverse modes in a similar way as the wave
plates transform the polarization state represented on the Bloch
sphere for the polarization. Additionally, recalling that HLG
modes can be obtained from the conversion between LG
and HG modes, we finally conclude that the first-order HLG
modes with different values of α can be represented around a
closed longitude on the Bloch sphere. The azimuthal angle of
the longitude depends on the position of the corresponding
HG mode on the equator when α is equal to π/2. To be
precise, for the G1,0(x,y|α) mode [Fig. 3(a)], the connection
between coordinate parameters and angle parameters is given
as follows:

φa = 0,
(10)

α = 3

4
π − θa

2
(0 � θa � 2π ).

As a specific example, we analyze the condition when
the pump is a Gaussian mode, and the signal and idler are
G1,0(x,y|α) and G1,0(x,y|β) modes, respectively. On both
SLMs we load the relevant phase pattern for the state at the
longitude of the Bloch sphere, which corresponds to first-order
HLG modes. We can fix the angle parameter α of the pattern
on SLM1, and scan through the pattern from β=π

4 to β= 3π
4

on SLM2. The simulative coincidence counts rate can be
represented as a function of both parameter α and β as

PN ∝ cos2(β + α). (11)

For a specific signal mode, the coincidence counts rate
varies as sin2θ function with the angle parameter of the idler
mode. We observe nonclassical biphoton fringes with high vis-
ibility in Fig. 3(b). As a result, for a specific value of α, the state

012313-3



TANG, MING, CHEN, HU, XU, AND LU PHYSICAL REVIEW A 94, 012313 (2016)

FIG. 3. (a) Bloch sphere representation of specific first-order
HLG modes with different angle parameter. With the angle parameter
changing continuously, the corresponding points move around a
closed longitude. (b) Coincidence fringes for G1,0(x,y|α), with four
different angle parameter settings for the signal modes ( 5

8 π , 3
8 π ,

1
8 π , and − 1

8 π , respectively) and idler modes scanning from − 1
4 π

to 3
4 π .

after post-selection resembles a Bell state |ψ+〉 in the form

|�α〉= 1√
2

(|+α〉s |−α〉i + |−α〉s |+α〉i), (12)

where the state vector |±α〉 represents a photon in the first-
order HLG mode G1,0(x,y|±α). In fact, when we apply Eq. (8)
to the condition when the pump is Gaussian mode and the sig-

FIG. 4. Intensity (upper row) and phase (lower row) patterns
of the idler beam (left column) with the signal beam in mode
G1,0(x,y|π/3) (middle column) and pump beam in a Gaussian mode
(right column).

nal is G1,0(x,y|α) mode, the idler mode has the form (Fig. 4)

G1,0(
√

2x,
√

2y|−α) = G0,0(x,y)G∗
1,0(x,y|α). (13)

The idler mode has the same transverse mode numbers
as the signal mode, while the sign of the angle parameter is
opposite, which gives rise to the results in Fig. 3(b). It is also
seen that the scale of the idler light field reduces to 1/

√
2 with

respect to the pump and signal.
For HLG modes of order N � 2, there is no Poincaré-sphere

equivalent; we can still restrict ourselves to two-dimensional
subspace by defining a Bloch sphere in another form given as
[18]

Gθ,φ
n,m(x,y) = cos θ exp (iφ)Gn,m

(
x,y

∣∣∣π
4

)

+ sin θ exp(−iφ)Gn,m

(
x,y|−π

4

)
, (14)

where θ goes from 0 to π/2 and φ goes from 0 to π . Similarly,
the poles are LG modes when the angle parameter of the
corresponding HLG modes is set to particular values. In the
first-order condition, an arbitrary closed longitude on the Bloch
sphere corresponds to the HLG modes of the same order or
their superposition, but for high-order conditions, only a few
specific points on the closed longitude correspond. Any other
points must be represented in a superposition of different-order
HLG modes due to the limited dimension of the Bloch sphere.

As a specific example, we analyze points on the equator,
which represent a superposition of poles with the same weight
but different phase φ. In Fig. 5(a), the sphere of the mode
G

θ,φ

4,2 (x,y) is shown, for which the HLG mode elements are
shown in Fig. 1. On the equator, the hologram for four specific
phases is chosen to be displayed on SLM1, while the SLM2
scans around the equator. The normalized coincidence counts
rate is shown as a function of the phase [in Fig. 5(b)], which
fits the sin2θ curve. We observe once again the nonclassical
biphoton fringes with high visibility and expect the two-
dimensional entanglement state in the form

|�φ〉= 1√
2

(|φ1〉s |φ2〉i + |φ2〉s |φ1〉i), (15)

where |φj 〉(j = 1,2) represents a state on the equator in the

mode G
π/4,φj

4,2 (x,y). For other high-order HLG modes, we can
get the same coincidence fringes.

C. Quantum-correlation function of the HLG modes

Selecting the HLG modes as a basis for the space L2(R2),
the downconverted biphoton with arbitrary transverse mode
function can be considered in a superposition state of HLG
modes elements with a different transverse mode number
and angle parameter. Therefore, we analyze the correlation
between the two downconverted photons when they are
projected onto certain HLG modes elements. As the HLG
beam can be expressed in terms of the LG modes, a unitary
transformation relates the LG mode basis to the HLG mode
basis. This unitary transformation can be understood as a
rotation transformation. Then, the angle parameter α is the
characteristic rotation parameter, and the HLG modes are
treated as a rotated basis with respect to the LG modes. In
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FIG. 5. (a) Redefined Bloch sphere representation of high-order
HLG modes G

θ,φ

4,2 (x,y).The insets show the intensity (left) and phase
patterns (right) of four chosen signal modes. (b) Coincidence fringes
for G

θ,φ

4,2 (x,y) on the equator, with four different phase value settings
for the signal modes ( 1

8 π , 3
8 π , 5

8 π , and 7
8 π ) and idler modes scanning

from 0 to π .

addition to the specific example of G1,0(x,y|α) discussed
in the previous section, we calculate several sets of overlap
integrals between the two HLG modes with the same values
of n and m, but different values of α for measuring the
correlation between the two rotated basis elements (Fig. 6).
To implement this measurement, we display on SLM1 and
SLM2 with phase patterns of the corresponding HLG modes,
and measure the coincidence count rate when α is varied and
all other parameters fixed.

When the two values of α match, we can obtain the
maximum coincidence rate, while for different values of α, the

coincidence rate decreases. When the transverse mode number
increases, the decrease of the coincidence rate resulting from
the deviation between α also increases. This can be understood
when we expand the HLG modes into the HG basis. The higher
the order of the HLG modes, the more HG basis elements are
involved and hence the expansion coefficient is smaller. As
different HG basis elements are mutually orthogonal and have
no contribution to the overlap integral, when the number of
expansion terms is larger, smaller results can be obtained due
to the relatively smaller value of the modulus square of all
expansion coefficients.

The basis rotation performed by the parameter α affects the
whole infinite-dimensional Hilbert space constructed using
the HLG basis, and hence, a HLG mode with a specific α

cannot be fully reconstructed by finite basis elements defined
by a different value of α. As a result, when calculating the
coincidence rate, we obtain the nonzero results, which are
always less than 1. We can use this property to extend protocols
for quantum key distribution, such as BB84 schemes [28] or
two-step ones [29]. As an illustrative example, we would
propose a preliminary two-step filter-based quantum key
distribution (QKD) protocol, in which Alice transmits one-bit
information to Bob in two steps. After the two steps, Bob
performs measurement on the two parts and obtains the full one
bit. The Z basis is defined by, e.g., |0〉 ≡ G1,0,α,|1〉 ≡ G0,1,α

and the X basis is defined by |0〉 ≡ 1√
2
(G1,0,α + G0,1,α), |1〉 ≡

1√
2
(G1,0,α − G0,1,α). In the first step, Alice sends an arbitrary

α from some previously designed ones, i.e., α = 0, π
8 , π

4 ,
along one channel. In the second step, she chooses randomly
from one of the four states with HLG modes dependent on
the α transmitted in step 1 and sends it to Bob in another
separated channel. After Bob receives the specific α and state
transmitted in step 2, he performs a measurement on his HLG
modes by randomly selecting a state from one of the four
states determined by this specific α. After a sequence of this
procedure, they can share a random bit string, which is the raw
key.

Two channels should be separated to prevent possible
eavesdropping. Eavesdropping on only one of the channels
implies that the eavesdropper can never extract enough
information of the basis which Alice and Bob are using.
If two channels can be eavesdropped on at the same time,
the time interval of transmitting α in step 1 should set to
be random (and therefore unknown to Eve) while in step 2,
the time interval is fixed. It does not affect Bob’s choice of
basis because he performs a measurement sequentially after

FIG. 6. Overlap integrals between HLG modes with the same transverse mode number but different angle parameter α. When the angle
parameter is different, the overlap decreases. From left to right, the mode numbers (n, m) are (3, 3), (6, 2), and (10, 5), respectively.
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receiving two full parts. For eavesdroppers, the random time
delays between two steps break the correspondence of α and
the computational basis and force them to face the additional
task of getting the correct value of the α. Guessing a wrong
value of α, the eavesdropper measures in the incorrect basis,
and he will obtain less meaningful information but instead
introduce a disturbance in the system, resulting in its detection.
What is more, the information which the adversary needs
to guess is up to the amount of the preset values of α in
step 1. If in step 1, Alice chooses an α randomly from three
previously designed ones per round, then each value of α will
appear with the identical possibility. So the adversary needs to
guess log23 extra bits of information per round compared with
protocols without using α. In comparison to QKD protocols
which manipulate OAM modes [30] or other transverse modes
[31], encoding information in the HLG modes basis has the
advantage of more security and flexibility.

IV. ANGULAR MOMENTUM PROPERTIES

Angular momentum of the HLG beams is another subject
of interest. The OAM per photon in linearly polarized HLG
modes is given by [18]

L[Gn,m(x,y|α)] = n − m

ω
sin 2α. (16)

It is seen that HG modes (e.g., α = π/2) have no OAM,
while the LG (e.g., α = π/4) modes have OAM. For any
fixed transverse mode number, when α varies in a continuous
manner, the corresponding OAM values of the HLG beam
are also continuous. They can be considered as suitable
basis elements to tune fractional OAM [32]. Moreover, as a
deduction of the overlap integral between different HLG mode
functions mentioned in the previous section, the correlation of
the OAM between the two downconverted photons mapping
on a particular HLG mode basis is also obvious. The simulated
results of the simplest example of this correlation between the
first-order signal and idler HLG modes can be seen in Fig. 7(a).

We focus on whether or not the conservation of OAM can
be fulfilled even for a fractional value condition. Actually,
for a given pump mode, the signal and idler provide stronger
correlation in two specific HLG modes because of the OAM
conservation. Here, the OAM per photon is still defined as l�,
but l takes a fractional value as well. When the pump beam
carries no OAM [e.g., Fig. 7(a), the pump is a Gaussian mode],
the normalized coincidence rate becomes maximal if the OAM
is conserved and vanishes when |ls − li | = 1. Therefore, it is
most likely to detect a pair of signal and idler modes that
conserve the OAM of the pump beam, while it is impossible
to find combinations of signal and idler modes that violate
OAM conservation by one for first-order HLG mode. When
the pump beam takes OAM [e.g., Fig. 7 (b)], a maximum
of the normalized coincidence rate appears in the position
where the integer OAM conserves. If we continue to detect
higher-order modes, the coincidence rate is always found to
be minimum whenever |ls − li | is equal to an integer, which
represents the least possible detect combination. Note that
there is a secondary maximum of the OAM correlation function
in Fig. 7(b), and the coincidence rate in Fig. 7(a) decreases
gradually in the direction perpendicular to the maximum line.

FIG. 7. (a) The correlation of the OAM between the signal and
idler photons in the first-order HLG mode G1,0(x,y|α) and the pump
photon carrying no OAM. (b) The correlation of OAM between the
signal and idler photons in the HLG mode G2,0(x,y)∞. The pump
photon is in mode G2,0(x,y|π/12), which carries an OAM of � per
photon. The maximum of the normalized coincidence rate appears in
the position where the OAMs of the signal and the idler are 2� and
−�, respectively.

These results seem to imply the violation of the conservation
rule for the fractional OAM condition. However, it is not the
case for this anomaly results from the method of calculating
the coincidence rate. Because of the continuous value of α, the
HLG mode basis is overcomplete and the modes with small
deviation between α are not orthogonal. When we calculate the
overlap integral between these two HLG modes, the additional
quantity is inevitable, which gives rise to the nonzero results
when the conservation condition is violated. Thus, the HLG
modes with integer OAM satisfy the conservation rule strictly,
while for the condition of fractional OAM, we can say that it is
more likely to detect combinations of signal and idler modes,
which conserve the OAM.

V. DISCUSSIONS

As mentioned above, with particular vortex and singularity
patterns, the HLG modes have potential applications in quan-
tum cryptography protocols, quantum imaging, and quantum
pattern recognition. We firstly focus on the distribution of
phase singularities (characteristic points with zero intensity)
as the angle parameter α is varied. We calculate the intensity
and phase of the HLG modes (Fig. 8) in the initial plane (z = 0)
at a fixed value of n, m and at different values of α. It is seen
to generate a column of isolated phase singularities on the y

axis, in which the number is just the transverse mode number
n. Note that for the case when α = 0, the HLG beam is similar
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FIG. 8. Intensity (upper row) and phase (lower row) patterns of
the HLG mode in the initial plane (z = 0) at fixed values of the
transverse mode number (n = 3, m = 0) and different values of the
angle parameter 0, 1

12 π, 1
6 π, 5

24 π, 1
4 π, 1

3 π, 5
12 π .

to the standard HGn,0 mode, the phase singularities ceasing to
be isolated, but rather the zero-intensity lines are parallel to
the x axis. With the angle parameter increasing from 0 to π/4
when its absolute value is small, these isolated singularities
converge slowly and maintain equal-interval distribution, but
convert from lines to points quickly. However, as its absolute
value increases, in particular when the value reaches π/4, the
isolated singularities shift along the y axis toward the origin
point, whereas at α = π/4, all the singularities merge into a
single isolated (n-fold degenerate) optical null at the origin,
which is the main feature of the LG modes. The isolated
singularities behave in a similar way along the x axis with
the angle parameter varying from π/4 to π/2. In the phase
patterns, each isolated singularity is associated with an optical
vortex of topological charge −1 or +1. When the transverse
mode number is larger, the “motion” of phase singularities
becomes more complicated, generally in two steps. First,
the equal-interval distributional isolated singularities tend to
change their shape from line to point with positions essentially
constant. Then, these singularities begin to converge towards
the origin keeping the pointlike shape. The reason for the
behavior of phase singularities may relate to the value of
the polynomial’s root of the mode expression, where further
research is expected.

In Sec. III C, some potential applications of using HLG
modes in QKD have been proposed. As we know, mutually
unbiased bases (MUBs) are frequently used in drawing up
efficient QKD protocols. Here we still use a linear combination
of HLG modes to construct a mutually unbiased basis set,
which is in analogy with the high-dimensional QKD with
OAM. It is not evident that changing the α of the primary
encoding basis merely can be employed to construct MUBs,
though this looks like an exciting subject. Introducing the
continuous α parameter may result in the nonorthogonality

of wave functions and become a major obstacle in finding
MUBs. However, the vanishing overlap in Fig. 6 indicates
that orthogonal modes can appear by altering α, and what
we should do is to find some appropriate values of α which
maintain the orthogonality of the HLG modes according to
practical needs. What is more, similar to the original BB84
protocol, we can also choose two different values of α,
each of them defining a HLG modes basis. For any fixed α,
modes {Gn,m(x,y|α); n,m = 0,1,2 · · ·} in the same basis are
orthogonal and modes in a different basis are nonorthogonal.
With the convenience of manipulating HLG modes in the
practical operation, we believe the applications of HLG modes
in this field are very promising.

VI. CONCLUSIONS

In conclusion, we show the entanglement property of
photons in the first-order HLG modes. Moreover, by redefining
the Bloch sphere, the nonclassical correlation property of the
high-order HLG modes with a specific singularity pattern
structure is also discussed. We can use these properties to
nonlocally steer the distribution of singularities on one photon
by measuring the singularity pattern on another photon. We
then calculate the overlap integral depending on the angle
parameter for measuring the correlation between two specific
HLG modes, which can be used to extend the quantum
key distribution protocols and to tune experiments dealing
with high-order transverse modes. In a perspective of angular
momentum, the finite mode overlap between modes differing
by fractional OAM reveals that the conservation law of OAM
is distinct between the integral and fractional condition. For
the latter case, it is most likely to detect combinations of
the signal and idler modes, which conserve the OAM. The
HLG modes with a continuous value of OAM provide a
platform to investigate classical or nonclassical properties for
angular momentum states with a fractional value. Finally, we
summarize some features of the singularity pattern of the HLG
modes with varying angle parameter.
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