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Influence of van der Waals forces on the waveguide deformation and power limit
of nanoscale waveguide devices
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The ultrashort-range force, the van der Waals force (VWF), rises rapidly when one nanoscale waveguide (NW)
is close to another one, and is stronger than the external transverse gradient force. We theoretically investigate
the great influence of the VWF on the device performance in a typical NW optomechanical system consisting
of a suspended silicon waveguide and a silica substrate including waveguide deformation stiction and failure
mechanism. The device shows unique optically activated plastic and elastic behaviors and stiction due to the
VWF. When the input optical power is above the critical power, the waveguide is sticking to the substrate and
the deformation is plastic and unrecoverable, even though the total force is less than the yield strength of the
waveguide material. This is important and helpful for the design and applications of optomechanical devices.
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Optomechanical systems are a burgeoning field that com-
bines nanophotonic and nanoelectromechanical devices seam-
lessly in an integrated system. Various configurations have
been proposed and demonstrated in optomechanical systems
including high-finesse cavity with radiation-pressure force
[1–3] and evanescently coupled optical nanoscale waveguides
(NWs) with the transverse gradient force (TGF). In the
evanescently coupled configuration, a transverse gradient force
can be generated from the lateral gradient of a propagating
light field in NWs [4,5]. The force can be used directly for
electromechanical actuation and precisely control the positions
of optical waveguides and devices [6–14]. This TGF works
with the highly evanescent NW and does not require a reflective
surface; thus it is more versatile for future large-scale photonic
integrated circuits in planar structures than the radiation-
pressure force. So far, a number of devices have been studied
for realizing the TGF between a substrate and a suspended
waveguide or two parallel waveguides. These devices may
find plenty of applications in optical signal processing,
which include nonlinear signal processing devices [8], tunable
directional couplers [10], tunable birefringence devices [11],
wavelength-filtering devices [12], etc.

In order to make as much use of the force as possible, the
width of the waveguide and the gap between the waveguides
or substrates should be as small as possible. In general, the size
is of tens or hundreds of nanometers. Tens of μN attractive or
repulsive force can be achieved at the input optical power of
tens of mW [10,11]. A smaller gap between waveguides means
a stronger TGF. However, another type of force, the internal
force or the van der Waals force (VWF), which is sometimes
referred to as the Casimir force in the microelectromechanical
system [15–17], arises and can be relatively strong at such
small sizes compared to the TGF. The VWF originates from
the instantaneous dipole generated by the fluctuation of the
electron cloud surrounding the nucleus of electrically neutral
atoms [18]. It is an ultrashort-range force and decays rapidly to
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zero away from the surface. Different from the TGF, the VWF
is generally attractive in nature, and has nothing to do with
the optical power. In fact the VWF, which is stronger than the
TGF at low power, can exist between NWs with a nanoscale
gap. In previous work on optomechanical devices, it was easily
neglected except for the calculation of the short-range Casimir
force between two waveguides [19] and the control of the
Casimir force between a photonic-crystal membrane and the
substrate [20]. It is important to further study the competition
and cooperation between the VWF and the TGF and how the
VWF affects the physical geometry and optical and mechanical
characteristics in NW-based optomechanical devices. In this
paper, we investigate theoretically the contribution from
the VWF in the performance of a typical optomechanical
device. We calculated the mechanical deformation induced
by different forces. The results show that the VWF plays a
very important and different role in optomechanical devices.
A significant influence of the VWF is that the waveguide
will show distinctive optically activated plastic and elastic
behaviors and stiction. When the optical power is relatively
low, the waveguide deformation is elastic and can return to its
original shape if the optical power decreases to zero. However,
there is an elastic limit related to the input optical power due
to the existence of the VWF. The waveguide deformation
resembles plastic deformation and the waveguide will be
permanently bonded to the substrate when the optical power
increases beyond the critical value. The phenomenon can occur
even though the waveguide material is still in its elastic region.
These unique characteristics are important and helpful for the
design and operation of optomechanical devices, and would
possibly open new routes to many potential applications such
as switch and memory.

We consider the typical structure in optomechanical devices
as shown in Fig. 1. It is a simple and generic configuration
which consists of a silica substrate and a suspended silicon
waveguide. The waveguide is designed to separate from the
substrate by a gap of size g, in the absence of deformation.
The suspended section has a length of L and the waveguide has
a cross section of dimensions a×d. From previous work [6], it
is known that the force on the free-standing waveguide arises
when the guided light is evanescently coupled to the dielectric
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FIG. 1. (Color online) (a) 3D illustration of the structure. (b) The cross-section view of the structure. The width of the waveguide is
a = 500 nm; the height of the waveguide is d = 110 nm; g is the designed gap between the waveguide and the substrate, in the absence of
deformation. The drawing is not to scale.

substrate. The magnitude of the force is proportional to the
optical power, and the sign is always attractive. On the other
hand, strong intermolecular and surface effects give rise to the
VWF even without the input power. That force can deform the
beam and thus change the effective refractive index.

According to the VWF theory, the potential between
two small molecules is purely attractive when the distance
between molecules is more than several angstroms [18] and
its relationship with the distance is w(r) = −C/r6, where
w(r), C, and r represent the potential, the potential constant,
and the distance between two small molecules, respectively.
If we assume that a small molecule interacts with an infinitely
large substrate, we can get the corresponding potential w(D) =
−πCρs/6D3, where D and ρs represent the distance between
the molecule and the substrate, and the number density of
molecules in the substrate [18], respectively. To calculate
the potential per unit length between the waveguide and the
infinitely large substrate, we have to integrate w(D) in the
waveguide area:

w(g) =
∫ g+d

g

ρwaw(z)dz = −Cρwρsaπ

12

[
1

g2
− 1

(g + d)2

]

= −Aa

12π

[
1

g2
− 1

(g + d)2

]
, (1)

where g is the gap between the waveguide and the substrate,
ρw is the number density of molecules in the waveguide, z

is the direction perpendicular to the substrate, and A is the
Hamaker constant between the materials: A = π2Cρsρw [18].
We have to mention here that the problem of additivity is
avoided in the Lifshitz theory and Eq. (1) is valid even within
the framework of continuum theories [18]. The only thing
that changes is the way we calculate the Hamaker constant
when we apply Eq. (1) in the Lifshitz theory. According to a
simplified model, the Hamaker constant between two different
materials is A = (A1A2)1/2, where A1 and A2 are the Hamaker
constant of material 1 and material 2, respectively [21]. For
pure silica, the Hamaker constant is 6.5 × 10−20 J and for
pure silicon, the Hamaker constant is 1.1 × 10−18 J [22].
Considering the retardation effect of the VWF at the relatively
large separations (>5 nm), the full Lifshitz equation should be
applied to calculate the Hamaker constant [18]. However, in the
gap range in our model (<100 nm), we can use the following

simplified equation to calculate the Hamaker constant with the
retardation effect: Aret = Anon−ret/(1+pg/100 nm), where p

is estimated to be around 10 in our model [18].
Then, according to the virtual work principle, we can get

FVWF = −∂w(g)

∂g
= −Areta

6π

[
1

g3
− 1

(g + d)3

]
, (2)

where FVWF represents the VWF per unit length. Using Eq. (2),
we can plot the relationship between FVWF and g, which can
be seen in Fig. 2(a).

For infinitely long waveguides without loss, the TGF can
be calculated as follows [4]:

fTGF = −1

c

ng

ω

∂ω

∂g

∣∣∣∣
k

, (3)

where fTGF represents the TGF per unit length per unit power,
c is the speed of light in vacuum, ng is the group index, ω is
the frequency, and k is the wave vector. By substituting ω =
ck/neff into Eq. (3), the TGF can be expressed as a function
of the effective index neff :

fTGF = 1

c

ng

neff

∂neff

∂g

∣∣∣∣
k

. (4)

Using Eq. (4), we can plot the relationship between fTGF and
g when the wavelength is fixed at 1550 nm, which can be seen
in Fig. 2(b).

From the figures above, the VWF increases more rapidly
than the TGF when the gap declines to zero. It can roughly
be estimated that when the optical power is around 0.5 mW
and the gap is around 80 nm, the VWF and the TGF have
the same order of magnitude. To further investigate the
relationship between these forces, a new function can be
defined as

F (P,g) = P |fTGF| − |FVWF|, (5)

where P is the optical power, and |fTGF| and |FVWF| are the
absolute values of the TGF and the VWF. The calculated results
are plotted in Fig. 2(c). The figure shows that when optical
power is low and the gap is small (the lower left area of the
figure), the VWF is comparable with or even much larger than
the TGF, which indicates that the VWF cannot be neglected
and even dominates under this circumstance. The balanced
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FIG. 2. (Color online) (a) The relationship between the VWF per
unit length and the gap. (b) The relationship between the TGF per
unit length per unit power and the gap. (c) The difference between
the VWF and the TGF. The unit is μNm−1. The dashed line is the
power-gap curve when TGF = VWF.

conditions are shown as the dashed line when the TGF equals
the VWF.

The suspended silicon waveguide on the silica substrate
can be modeled as a double-clamped beam [23]. When the
maximum deformation (Dmax) of the waveguide is much
smaller than the length of the waveguide, the deformation
along the waveguide is decided by the following deformation
equation [23]:

EI
d4u(x)

dx4
= −q(x), (6)

where E = 131 GPa is the Young’s modulus of silicon,
I = ad3/12 is the moment of inertia of the waveguide, x

is the direction along the waveguide, u(x) is the deformation
distribution along the waveguide, and q(x) is the force per unit
length along the waveguide.

If we want to get an accurate solution, a numerical iterative
feedback tuning method has to be employed; it will be
discussed in the following paragraphs. Here we try to obtain the
approximate solution by a simplified averaged-force method.
We firstly consider the simplest case of a uniform load, and
then an analytical solution can be given:

u(x) = −q0x
2(x − L)2/24EI = −Dmax(2/L)4x2(x − L)2.

(7)

The Dmax occurs at the center of the waveguide. By slightly
transforming Eq. (7), we can get q0 = 24EI (2/L)4Dmax. We
can find the linear relationship between the assumed uniform
load q0 and the Dmax, which is shown in Fig. 3 (the solid black
line). Here the designed gap between the waveguide and the
substrate is fixed at 80 nm and the length of the waveguide is
30 μm. We can calculate the Dmax if the load is beyond the
yield strength of the waveguide material [24] and the result is
much larger than 80 nm.

On the other hand, the averaged force can be calculated
by integrating both the VWF and the TGF along the given
shape, which is decided by Dmax using the equation u(x) =
−Dmax(2/L)4x2(x–L)2. The averaged forces (VWF + TGF)
of various optical powers are shown in Fig. 3(a) (the dashed
colored lines).

There are two intersections between the solid black line
and one dashed colored line at low optical power. The right
intersection with larger Dmax corresponds to an unstable
equilibrium state. At the left intersection with smaller Dmax, a
stable equilibrium state with such a Dmax can be realized by
the VWF and the TGF at corresponding optical power. This
is an approximate solution. The intersection A in Fig. 3(a)
represents the original state when the optical power is zero
and the relatively small deformation of this original state is
caused only by the VWF. The static deformation increases
with optical power and the deformation is elastic because the
waveguide can return to its original state at A after the TGF is
removed.

However, the two intersections approach when the optical
power increases and coincide with each other [B in Fig. 3(a)]
at a critical power. The solid black line cannot cross the dashed
colored line above B. When the optical power slightly increases
above the critical power (Pc) at B, the total force (TGF + VWF)
increases too fast and becomes too large for the beam to achieve
a stable deformation, and then the beam is pulled straight down
to the substrate and the middle part of the beam is bonded to the
surface. The final Dmax is as large as the designed gap (80 nm).
More parts of the beam will be collapsed into the substrate
surface if the optical power further increases. However, the
deformation is plastic and irrecoverable and the waveguide is
permanently bonded on the substrate by the ultrastrong VWF,
even after the TGF is removed.

If we only consider the TGF as shown in Fig. 3(b), there
is also a critical power Pc. When P>Pc, there is no stable
solution and the waveguide will be pull down to the substrate.
However, due to no VWF, it is always elastic and can return
after the optical power decreases to zero.

The optically activated plastic and elastic behavior is very
interesting, but it also limits the power lever in the waveguide.
The above method can be implemented to roughly obtain
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FIG. 3. (Color online) The force-deformation response at the simplest case of an assumed uniform load (the solid black lines) and the
averaged force for different optical input power at a given shape u(x) = −Dmax(2/L)4x2(x–L)2 (the dashed colored lines) when considering
(a) TGF + VWF and (b) TGF only. In (a), the left intersection is the approximate stable solution at specific optical power. The intersection A
represents the original shape caused by the VWF when the optical power is zero. B is the critical point above which the solid black line cannot
cross the dashed colored line and there is no stable solution.

the approximation of the critical power. In order to get the
exact value, the iterative feedback tuning method has to
be employed to get a convergence result. Using this method, we
accurately calculate the Dmax at the center of the waveguide
under different input optical power. Figure 4(a) shows the
evolution of deformation shape versus the optical power by
the total force (TGF + VWF). When P = 0, the waveguide is
deflected only a little by the VWF, and then deflected more
with increased power. As P is at the critical power of 18.3 mW,
it achieves a critical state, and it still can be recoverable
after the stress is removed and returns to the original state
at P = 0.

However, the waveguide will irreversibly be pulled to the
substrate quickly when P>Pc. More parts of the beam will be
collapsed into the substrate surface if the optical power further
increases and the waveguide cannot return to its original shape

even though the optical power is reduced to zero. The red
shaded area is the plastic deformation range. Here we have
to mention that the waveguide material is still in its elastic
region.

If we only consider the TGF, there is also a critical power
at 25.5 mW, but the waveguide can return to the original state
at P = 0.

Figure 5(a) shows the curve of the final Dmax versus the
optical power, for the TGF, the VWF, and TGF + VWF,
respectively. The final Dmax for TGF + VWF is almost linear
to the optical power if P � Pc. The critical state in this figure
shows that there exists a critical power above which there is no
stable solution of Eq. (6) and the waveguide is pulled straight
down onto the substrate. The deformation is elastic in the
absence of the VWF (the hollow square), and the waveguide
can return to its initial shape when the power is reduced to

 

Sh
ap

e(
nm

)

Position on the waveguide(µm)

(a) TGF+VWF

Sh
ap

e(
nm

)

Position on the waveguide(µm)

(b) TGF only

FIG. 4. (Color online) The evolution of the deformation shape versus the optical power by (a) the total force (TGF + VWF) and (b) TGF
only. The white and red shaded areas are the elastic and plastic deformation range, respectively.
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FIG. 5. (Color online) (a) The relationship between the final Dmax and the optical power for TGF, VWF, and TGF + VWF, respectively.
(b) The critical power at different waveguide lengths for TGF + VWF. The horizontal part of the blue triangle line means that when the gap
is smaller than a critical value (which is 49.65 nm for L = 35 μm), the VWF will pull the waveguide straight to the substrate without the
existence of the TGF. It can be estimated that there will be the same phenomenon for L = 25 μm and L = 30 μm.

zero. However, the deformation is plastic when taking the
VWF into consideration (the red circle); there exists a lower
critical power above which the waveguide is pulled down to
the substrate and permanently bonded to it. Another thing has
to be mentioned is that the difference between DmaxTGF+VWF

and DmaxTGF+DmaxVWF is always positive, and increases when
the optical power increases.

We also calculate the critical power at different waveguide
lengths for TGF + VWF. As shown in Fig. 5(b), Pc is higher
with a shorter waveguide and it has a nearly linear growth
when the gap is above a critical value.

In this paper, we theoretically investigate the VWF’s
influences on the NW optomechanical system consisting of
a suspended silicon waveguide and a silica substrate. The
calculation results show that the VWF has a great influence
on the device performance by deforming the waveguides and
thus tuning their effective refractive indices. When the input
optical power is relatively low, the VWF would be larger
or comparable to the TGF, whereas when the input power
is relatively high, the interaction between the VWF and the

TGF could make the VWF even larger than the TGF after the
deformation.

Due to the unique property of the VWF, the NW defor-
mation has the plastic and elastic behaviors depending on the
input optical power. When the input optical power is above
the critical power, the waveguide deformation is plastic and
unrecoverable, even though the total force is less than the
yield strength of the waveguide material. These interesting
phenomena possibly pave the way for alternative applications
of optomechanical devices. Finally, the results obtained in
this work are also important and helpful for the design and
operation of NW optomechanical devices.
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