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Abstract: We propose to use slot micro/nano-fiber (SMNF) to enhance the 
second-harmonic generation based on surface dipole nonlinearity. The slot 
structure is simple and promising to manufacture with high accuracy and 
reliability by mature micromachining techniques. Light field can be 
enhanced and confined, and the surface area can be increased in the sub-
wavelength low-refractive-index air slot. The maximum conversion 
efficiency of the SMNFs in our calculations is about 25 times of that in 
circular micro/nano-fibers. It is promising to provide a competing platform 
for a new class of fiber-based ultra-tiny light sources spanning the UV- to 
the mid-infrared spectrum. 
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1. Introduction 

Nonlinear interactions in optical fibers have been extensively studied since the early 1970s. 
Because of the central symmetry that silica is supposed to have, all the second-order dipole 
nonlinear coefficients should be zero, and second-order nonlinearities should not appear in 
silica optical fibers. Nevertheless, second-harmonic generation (SHG) with peak power-
conversion efficiency as high as ~3% has been reported to occur in optical fibers in 1986 [1]. 
Initially, this phenomenon could not be reasonably explained by core-cladding interface or 
bulk multipole moment contributions to the second-order nonlinearity [2]. A subsequent study 
revealed that the nonlinearity was mainly caused by the formation of a second-order 
susceptibility (χ(2)) grating through multiphoton processes involving both pump and SHG 
light [3]. The χ(2) grating introduces the second-order polarization and compensates the phase 
mismatch arising from waveguide and material dispersion in the fiber. However, it has been 
proved impossible to improve the SHG conversion efficiency beyond the level of a few 
percent because of a self-saturation effect by the interference of the SHG light with the χ(2) 
grating [3]. 

A recent experiment found phase-matched SHG at 532nm in a low-order mode of a sub-
micron diameter glass fiber [4]. However, the multiphoton processes leading to the χ(2) 
grating are limited in silica microfibers for the weak photosensitivity. In fact, a 
submicrometric diameter of microfibers calls for reexamination of interface and bulk 
multipole moment contributions to χ(2). Sub-micron diameter silica fiber can provide a higher 
power density, thus surface nonlinearity of core-cladding interface and nonlinearity of bulk 
multipole become the major mechanism for SHG. Furthermore, large core-cladding index 
contrast makes it possible to achieve SHG phase matching in a low-order mode with a 
sufficient intensity at the surface. 

The microstructured optical fibers developed during the last decade offer a lot of new 
features. With micromachining technologies such as focused ion beam (FIB) milling, 
different geometry can be obtained in optical fibers, for example, Fabry-Perot cavity with an 
open notch in a circular microfiber [5,6], ultra-short Bragg grating with deep grooves [7,8], 
fiber-top cantilever [9], and sub-wavelength light confinement tip [10]. Recently, the so-
called slot micro/nano-fiber (SMNF) has been proposed, which introduces a high 
birefringence and a large power density around the slot [11]. In addition, the high intensity at 
the slot surface also helps to enhance the surface nonlinearity. 

In this letter, we investigate the surface SHG by phase matching between fundamental and 
low-order mode in SMNFs, and compare the results with that in circular micro/nano-fibers 
(CMNFs). CMNFs are studied by analytical methods, and SMNFs will be studied numerically 
using the finite-element method. It can be seen that higher SHG conversion will theoretically 
be achieved in SMNFs. This kind of nano-scale geometry should open up new possibilities in 
fiber functionality including fiber-based optical nanosource, as well as nonlinear signal 
proceeding. 

2. Theory analysis and numerical model 

In the small-signal limit (pump depletion is negligible), SHG process can be described by the 
equation of amplitudes coupling [12]: 

 22
2 1 exp( ) 0.A i

dA
i z

dz
ρ β =− Δ  (1) 
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where A1 and A2 are the field amplitudes of the pump and SHG signals, respectively; Δβ = 
2β1-β2 is the phase mismatch between the fundamental and second-harmonic waves; ρ2 is the 
overlap integral [2]: 

 * (2)2
2 2

1 2

· .
4

dS
N N

ωρ =  e P  (2) 

where ω2 is the second-harmonic angular frequency. The function will be integrated on the 
cross-sectional region of the fiber, and dS is the area element. All the field components are 
normalized by the normalizing factors: 

 ( )*1
ˆ| ( ) j 1,2| ,

2
.j j jN dS= =× ⋅ e h z      (3) 

The fields of the guided modes can be written as: 

 ( , ) ( , ) exp( ( )( ) ).j j j j j j jA z tiω ω ω β ω−=E r e r  (4) 

 ( , ) ( , ) exp( ( )( ) ).j j j j j j jA z tiω ω ω β ω−=H r h r  (5) 

P(2) is the second-order nonlinear polarization. For pure-silica microfibers in air cladding, it 
originates from the contributions of silica-air interface and bulk multipole moments. The bulk 
contributions are expressed as [12, 13]: 

 (2)
0 1 1 0 1 1) () ( .)(b γε ε δ∇ ⋅ + ⋅∇=P r E E E E  (6) 

A third term proportional to 1 1( )∇ ⋅E E  can be included in the surface term [2]. The bulk 
contributions shown in Eq. (6) can be ignored, since the results for the silica microfibers 
indicated them to be of minor importance [12]. So we just take surface contributions into 
account, and P(2) can be written as: 

 (2) (2) (2 ) (2 ) (2 )( ) ( )[ ].s s s
s δ ⊥ ⊥≈ = + +−P P r r S P P P   (7) 

where S stands for the vectors of the silica-air interface. The surface contributions can be 
divided into three distinct terms [12]: 

 (2 ) (2 ) 2
0 1 .ˆs sε χ⊥ ⊥ ⊥ ⊥=P e r  (8) 

 (2 ) (2 ) 2
0 1 .ˆs sε χ⊥ ⊥ ⊥=P e r    (9) 

 (2 ) (2 )
0 1 12 .s s eε χ ⊥=P e    (10) 

where ˆ⊥r  is the unit vector normal to the interface. The three terms of surface second-order 

susceptibility can be measured by experiments: (2 ) 3 26.3 10 pm /Vsχ⊥ = × , 
(2 ) 2 27.7 10 pm /Vsχ⊥ = × , (2 ) 2 27.9 10 pm /Vsχ = ×  [12,14,15]. 

For CMNF, the fields of the guided modes are available by analytically solving the 
Maxwell equations [16]. According to the calculation, SHG efficiency in TM mode is lower 
than that in HE mode [12]. For simplicity, the pump signal is assumed to propagate in the 
HE11 mode, while the SHG signal is assumed to generate in the HE21 mode of the same 
polarization, because only modes with the same polarization have a significant overlap 
integral. The phase matching is achieved by material dispersion and multimode dispersion of 
the fiber. The material dispersion of silica glass can be described by the Sellmeier polynomial 
[16]. For HEn1 mode, the propagation constant βn is determined from the equation: 
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 (11) 

 2 2 2, 1.n n s n n n nn n w nu ak ak= − = −   (12) 

where Jn is Bessel function of the first kind, Kn is modified Bessel function of the second 
kind, subscript n is the mode order, kn is the vacuum wave vector of the guided light, ns is the 
silica refractive index calculated from the Sellmeier polynomial, nn = βn/kn is the modal 
effective index, and a is the fiber radius. SHG signal will only efficiently generate in the 
phase-matched mode with Δβ = 0. In order to realize phase matching in different SHG 
frequencies, we modify the multimode dispersion by changing the fiber diameter. 

In the small-signal limit with perfect phase matching, the power-conversion efficiency is 
given as [2]: 

 22
2 1

1

.( )z
P

P
Pρ=  (13) 

where P1 is the pump power and z is the interaction length (generally the waist length of 
microfiber or the slot length). This is not a complete description of SHG dynamics, but it is 
sufficient to estimate the SHG conversion efficiencies for comparison between CMNFs and 
SMNFs. 

According to Eq. (13), SHG conversion efficiency is proportional to the square of the 
overlap integral ρ2 with all other conditions being equal. Thus the absolute value of ρ2 
determines the SHG conversion capability. From Eqs. (2)–(12) and analytic solutions of mode 
fields, we can calculate the |ρ2| of CMNFs. 

 

Fig. 1. Schematic of SMNF. Inset, (a) Cross-sectional view of SSMNF in air cladding. ns and 
nair are the refractive index of silica and air, respectively. The waist diameter d, the slot width 
ws and the slot height hs characterize the structural features of the SSMNF. (b) Cross-sectional 
view of DSMNF in air cladding. Each slot has its own structural parameters (ws1, hs1 for left 
slot and ws2, hs2 for right slot). ds is the distance between the two slots. 

For SMNFs, numerical simulations will be adopted to obtain |ρ2|. As depicted in Fig. 1, 
slot structure is located in the waist region, and slot number can be one or more. In the 
calculations, we just consider single-slot micro/nano-fibers (SSMNFs) and double-slot 
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micro/nano-fibers (DSMNFs), and assume nair = 1. The pump signal is assumed to propagate 
in the y-polarization of the HE11-like fundamental mode, while the SHG signal is assumed to 
generate in the y-polarization of the HE21-like mode (the 5th-order mode). Mode fields and 
propagation constants are determined using the finite-element method. 

 

Fig. 2. (a) Relation between λSHG and d for CMNF, SSMNF and DSMNF. (b) Relation 
between |ρ2| and λSHG for micro/nano-fibers with different structural parameters. 

3. Simulation results and discussions 

Figure 2(a) shows the calculated relation between the fiber diameter and the phase-matched 
SHG wavelength for CMNF, SSMNF (hs = 0.5d, ws = 0.05d) and DSMNF (hs1 = hs2 = 0.5d, 
ws1 = ws2 = 0.05d, ds = 0.075d). As the slot number increases, phase-matched λSHG for 
different structures at the same diameter decreases. It results from the modulation of the 
waveguide dispersion by slot structure. The slot structure enlarges the waveguide dispersion 
by more evanescent field propagating outside the fiber, making β1 of the pump wave in 
fundamental mode and β2 of the second-harmonic wave in high-order mode matched at a 
shorter wavelength. Modulation can be enhanced by more slots in the fiber. 

In Fig. 2(b), the absolute value of ρ2 for CMNF, SSMNF1 (hs = 0.5d, ws = 0.05d), 
SSMNF2 (hs = d, ws = 0.05d), DSMNF1 (hs1 = hs2 = 0.5d, ws1 = ws2 = 0.05d, ds = 0.075d), and 
DSMNF2 (hs1 = hs2 = d, ws1 = ws2 = 0.05d, ds = 0.075d) is plotted versus λSHG. For all the 
structures, |ρ2| roughly scales with (λSHG)−3. |ρ2| of SMNFs is significantly larger than that of 
CMNF, and SSMNF2 has the maximum |ρ2| (about 5 times of that in CMNF). This can be 
explained by the increasing of the surface area and the power density at the surface. Figure 3 
shows the power flow distribution of CMNF, SSMNF, and DSMNF in HE21 or HE21-like 
mode for the corresponding phase-matched λSHG. For SMNFs, we can see a fraction of light 
field is confined in the slot structure and there is more evanescent field around the fibers. 
Thus the surface power density is enlarged in SMNFs. At the same time, the slot structure 
increases the surface area. Larger surface area and higher surface power density contribute to 
stronger surface nonlinearity. However, the double slots make the power flow distribution 
dispersed, which decreases the light intensity at the surface. But the surface area contribution 
is larger than the surface power density dispersion contribution in DSMNF1 and DSMNF2, so 
that DSMNFs have larger |ρ2| than SSMNF1. Surface area scales up with the height of the 
slots. With the combined effect of concentrated power distribution and large slot surface area, 
|ρ2| of SSMNF2 reaches the maximum. Impacts of hs on |ρ2| can been seen more clearly by 
modulating hs of the SSMNF with ws = 0.05d (shown in Fig. 4(a)). Considering the difficulty 
to control the milling depth of the slots and the fact that the overlap integral is just maximized 
with hs = d, the fiber should be pierced through during manufacturing processes. 
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Fig. 3. Power flow distribution of CMNF (left), SSMNF (center), and DSMNF (right) in HE21 
or HE21-like mode. 

Figure 4(b) shows the |ρ2|-λSHG relation with modulation of ws in the SSMNF with hs = d. 
A wider slot dispersed the power flow distribution, which leads to a lower light intensity at 
the surface and then the reduction of |ρ2|. Further modulation of ds of the DSMNF with hs1 = 
hs2 = d and ws1 = ws2 = 0.05d shows that the distance between slots has little influences on the 
overlap integral. 

 

Fig. 4. (a) Relation between |ρ2| and λSHG for SSMNFs with different slot heights. (b) Relation 
between |ρ2| and λSHG for SSMNFs with different slot widths. 

From the simulation results, it proves that the SHG conversion efficiency achieved in 
SMNFs is significantly higher than that in CMNFs. For SSMNF2 with slot length z = 1mm 
and a 1550nm pump source with peak power P1 = 1kW, conversion efficiency is calculated to 
be ~0.027%, while the CMNF with the same parameters only has efficiency ~0.0011%. More 
efficient conversion can be obtained by the increasing of interaction length and pump power. 
It is worth mentioning that the SHG performance of fibers would be limited by the structure 
fluctuations. The structure fluctuations including variation of fiber diameter and slot width 
have influence on both the overlap integral and the phase matching condition. For example, 
the phase-matching wavelength λSHG scales linearly with the fiber diameter and the overlap 
integral has a (λSHG)−3 dependence (shown in Fig. 2). A similar impact on λSHG and |ρ2| can be 
seen in terms of slot width variation. However, structure fluctuations will not change the 
average value of fiber diameter and slot width, thus the average overlap integral should be 
stable, that is to say, overlap integral fluctuations is not a major problem during the SHG 
process. In fact, the phase mismatch plays a more important role. The phase mismatch caused 
by the structure fluctuations can be estimated by dividing the interaction region into numbers 
of domains. Structure is uniform in each of the domains. Assuming an undepleted pump, the 
field amplitude of the second-harmonic signal can be given by integral of Eq. (1): 

#186659 - $15.00 USD Received 8 Mar 2013; revised 21 Apr 2013; accepted 22 Apr 2013; published 3 May 2013
(C) 2013 OSA 6 May 2013 | Vol. 21,  No. 9 | DOI:10.1364/OE.21.011554 | OPTICS EXPRESS  11559



 
1

2
2 1 2 2 1 1

1

( ) ( ) exp( ) .

1
sin

2
1

2

m

m m m m

m

z
z

z
A z A z i A i z

β
ρ β

β

+

+ +

+

+
Δ Δ

= Δ Δ
Δ Δ

 (14) 

where Δβm + 1 is caused by the variation of λSHG between the ideal structure and the real 
structure in the (m + 1)th domain. The nonlinear impact of phase mismatch cannot be 
cancelled by average, thus it will accumulate through the whole propagation process. 
Considering the contributions from all the domains, relation between SHG field amplitude 
and propagation length will be obtained. According to Eq. (14), A2(zm) approaches 0 and 
sin(Δβm + 1Δz/2)/(Δβm + 1Δz/2) approaches 1 initially, so A2(zm + 1) is approximately 
proportional to Δz. Then the field amplitude gradually deviates from the linear relation with 
Δz. The SHG power is proportional to the square modulus of the field amplititude, thus the 
power scales up with z2 at the beginning and then deviates from this tendency. Some prior 
simulation work has been already made, finding that when there are random structure 
fluctuations, the SHG power initially follows a z2-dependence and at longer propagation 
distance becomes a linear dependence in the micro/nano-fiber [12]. It is in accordance with 
the prediction that the structure fluctuations reduce the growth rate of the SHG power at 
longer propagation length. Δλ/L is used to characterize the roughness of the structure, where 
Δλ is the maximal deviation of the phase matching wavelength from the ideal value. 
Deterioration of the conversion efficiency begins to emerge at Δλ/L≈2·10−9, and for an 
interaction length about 10cm it means Δλ = 0.2nm [12]. The deterioration will increase for 
larger Δλ/L. In our slot structure, the overlap integral is about 5 times of that in the CMNF. 
Thus it can compensate for the impact of the structure fluctuations to some degree, and the 
conversion efficiency will reach a higher level before deterioration. Increasing the length of 
the uniform waist of the SMNF is another effective way to compensate for the influence of 
the fluctuations. 

To overcome the limitation from the structure fluctuations, high precision in fabrication is 
required. It is able to maintain an out-diameter fluctuation of ~1% over a length of ~1m 
recently, which is corresponding to Δλ/L ~5·10−9 for a mirco/nano-fiber with 500nm in 
diameter [17]. Further improvement of the SHG efficiency can be realized by optimizing the 
structural parameters of the slot or utilizing other mechanism of second-order nonlinearity. 
For example, strain in the material breaks the symmetry of the structure, introducing a 
sizeable second-order nonlinearity into the waveguide, so that a stressing overlayer can be 
deposited on the fiber to enhance the nonlinearity [18]. Recently, self-assembled organic 
nonlinear surface layers have been demonstrated on a silica fiber taper, in which significant 
SHG was observed [19]. 

Considering the actual situation, a transition region should be added before and after the 
rectangular slot, to maximize the coupling efficiency between the input/output fiber and 
SMNF. 

4. Conclusions 

In this work, the surface dipole contributions to the second-harmonic generation in slot 
microfibers have been studied numerically. According to our calculations, the introduction of 
the slot structure can significantly increase the surface second-order nonlinearity. Two kinds 
of typical cases (SSMNF and DSMNF) are investigated and compared with CMNF. Surface 
area and surface power density are key factors to characterize the surface SHG conversion 
capability. The maximum |ρ2| in the calculations is about 5 times of that in CMNF, which 
equals to a SHG conversion efficiency about 25 times of that in CMNF. SMNFs can be 
fabricated by micromachining techniques such as FIB milling, and higher conversion 
efficiency is expected by the optimization of the structural parameters or other mechanism 
such as strain-induced second-order nonlinearity. The advantages of strong surface second-
order nonlinearity, long interaction length and simple structure offer prospects for SMNFs in 
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efficient SHG conversion applications. Its unique geometry can also provide a promising 
platform for ultra-small fiber laser in particular including ultraviolet and visible light. 
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