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Abstract: A strategy for integrated and reconfigurable optical paths based on stacking optical 
functional films is proposed. It is demonstrated by stacking two liquid crystal polymer q-
plates and one quarter-wave plate for vector vortex beams generation. The topological charge 
and polarization order of generated vector vortex beams can be controlled independently by 
stacking and reordering different optical films with repeated adhesive ability. It supplies a 
low-cost, light-weight and versatile technique for reducing the volume of free-space optical 
system and has a great potential in optical researches and applications. 
© 2016 Optical Society of America 
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1. Introduction 

Optical path is composed of a set of elements to achieve certain functions, such as imaging, 
optical measurement and manipulation of wavefront. It is the fundamental requirement for 
both researches and applications of optics and photonics. The components for conventional 
free-space optical path could be reconfigured freely, however, they are usually heavy and 
bulky. Integrated optics [1,2] is compact, but it suffers from poor reconfigurability because 
their configurations are determined once fabricated. If one can combine their superiorities and 
avoid respective shortcomings, it will supply a powerful way for virtual/augmented reality 
display [3,4], optical communications [5] and computing [6]. 

A possible strategy is to replace the free-space optical elements with functional thin films 
and stacking them to realize the desired optical paths. It keeps the freedom of selecting and 
assembling of optical elements, while the overall volume and weight are drastically reduced. 
Liquid crystal polymer (LCP) [7,8] is a promising candidate for realizing such optical films. 
Thanks to M. Schadt et al’s great efforts [9], photoalignment can control the optical axis of 
LCP precursor conveniently, making the optical wavefront manipulation, the fundamental 
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function for most passive optical elements possible. After UV polymerization, molecular 
orientation can be maintained with robust thermal and photochemical stability. LCP brings 
new features such as self-standing, repeated adhesive ability and flexibility [10]. LCP 
functional film can possess such function as gratings, lenses, prisms, beam splitters and mode 
converters via specific designs [11–13]. Through overlaying different functional LCP films, a 
cascaded free-space optical path can be produced. In previous work, the feasibility of stacking 
numerous LCP films with arbitrary LCP director orientations in space was demonstrated [14], 
and complex optical functions such as beam steering [15–17] and polarization controlling 
[18,19] were presented. If one can take the advantage of repeated adhesive ability of separate 
LCP films, integrated and reconfigurable optical paths can be realized by stacking and 
reordering different optical functional films. 

In this work, LCP films with both homogeneous and spatially variant optical axes are 
fabricated. Then they are stacked together to generate vector vortex beams (VVBs), which is 
featured by the cylindrically variant polarization and spiral wavefront [20–22]. By changing 
and rearranging the separate films, the polarization order and topological charge of generated 
VVBs are controlled independently. Besides the complex mode conversion, other optical 
functions could also be demonstrated via this compact and reconfigurable strategy. 

2. Results and discussions 

Two q-plates and a quarter-wave plate (QWP) are required for generating VVBs [23]. Q-plate 
is a half-wave plate with specific optical axis orientation [24]: 0(r, ) qα ϕ ϕ α= + , where r is 

the radius, q is the topological charge of the q-plate, ϕ  is the azimuthal angle, and 0α  is the 

initial angle when 0ϕ = . The q-plate can convert circularly polarized light into an optical 

vortex (topological charge m = 2q) and convert linearly polarized light into a vector beam 
(polarization order P = 2q). Here, the first q-plate 1 1( , )qα  is used to generate optical vortex, 

the QWP is utilized to convert circular polarization to linear polarization, and the second q-
plate 2 2( , )qα  is applied to generate vector beams. The principle can be described as 

following. Jones matrix for each q-plate is: 

 
cos 2 sin 2

M .
sin 2 cos 2q

α α
α α

 
=  − 

 (1) 

Jones matrix for a QWP with its fast axis direction ( )θ  is: 

 
1 0

M R( ) R( ),
0QWP i

θ θ 
= − ⋅ ⋅ 

 
 (2) 

where R( )θ±  is the rotation matrix. For a left circular incident polarization 0E [1, ]T
in E i= , 

the output beam can be described as: 

 
2 1

E M M M E .out q QWP q in= ⋅ ⋅ ⋅  (3) 

When 01 02 0α α= =  and 45θ = − ° , Eout can be simplified as: 
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q
ϕ ϕ
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It can be seen that the generated beam possesses a phase factor 1exp( 2 )i q ϕ , corresponding to 

a spiral wavefront with m = 2q1. Meanwhile, a polarization factor 2 2[cos 2 ,sin 2 ]Tq qϕ ϕ  

indicates a cylindrically variant polarization with P = 2q2. And thus a VVB can be generated. 
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Moreover, the topological charge and polarization order of resultant VVB are decoupled and 
can be modulated by selecting different q-plates separately. 

 

Fig. 1. Schematic illustration of fabrication procedure for LCP q-plate and assembling of 
different optical films. 

By means of photoalignment [25–27], the above optical functional films could be easily 
fabricated in high quality. In this work, photoalignment is carried out on a dynamic micro-
lithography system, which can output arbitrary light patterns with precise polarization control 
[28]. The fabrication procedure for LCP q-plate and assembling of different optical films are 
schematically illustrated in Fig. 1. At first, the photoalignment agent sulfonic azo-dye SD1 
(synthesized by DIC, Japan) is spin coated onto a glass substrate, and heated at 100 °C for 10 
min to remove excess solvent. Subsequently, the alignment layer is photopatterned via a 
multi-step, partly overlapping exposure as reported in our previous works [29,30]. After 
photoaligning, the LCP precursor (UCL017, DIC, Japan, 23%wt LCP dissolved in 
methylbenzene) is spin coated onto the alignment layer. The thickness of LCP layer is 
optimized to be ~1.6 μm to satisfy the half-wave condition at 633 nm. Heating over 80 °C is 
needed for residual solvent evaporation. The polymerization of LCP is performed under an 
LED (365 nm, 13 mW/cm2, 2 min). An optically clear adhesive film (OCA, 8173D, 3M, 
USA) is attached on the top of LCP to remove the film from the glass substrate. Thus, a self-
standing flexible functional LCP film (here q-plate for instance) is realized. Finally, we 
assemble one q-plate, one QWP and the other q-plate subsequently to form the optical path 
for VVB conversion. 

 

Fig. 2. Schemes, micrographs and output beam patterns of: (a) first q-plate, (b) after stacking a 
LCP QWP, (c) overlaying all desired films. The short black lines in blue plate indicate the LC 
director distribution in the q-plate and pink plate indicates QWP. Red and blue arrows 
represent the direction of polarizer and analyzer of microscope, respectively. White arrows 
show the direction of analyzer before CCD. The scale bars and color bar indicate 200 μm and 
relative optical intensity, respectively. 

As an example, q-plates with q1 = 1, q2 = 4 and 01 02 0α α= =  are chosen to demonstrate 

our design. Left circularly polarized Gaussian beam (633 nm) is used as the incident light. 
The first q-plate is characterized and corresponding results are presented in Fig. 2(a). The 
micrograph depicts the inhomogeneous LC orientation that is translated to variation in 
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intensity under the polarizing optical microscope. The output beam is captured by a CCD and 
possesses a doughnut-like profile corresponding to the phase singularity of the optical vortex. 
To verify its topological charge, a cylindrical lens is employed to implement astigmatic 
transformation [31] and the converted pattern is also presented. Two dark stripes can be 
clearly observed, suggesting an optical vortex with m = 2. The polarization of generated 
optical vortex is reversed to right circular polarization. Subsequently, a LCP QWP with its 
fast axis orientated at −45° with respect to x axis is stacked to the first q-plate to convert the 
output beam into linear polarization. A polarizer is employed to check the polarization state, 
as shown in Fig. 2(b), revealing a horizontal linearly polarized optical vortex. After passing 
through the second stacked q-plate, the VVB is generated and analyzed by different 
polarization direction, as shown in Fig. 2(c). Sixteen lobes are observed and rotate with the 
analyzer, which is consistent with the properties of vector beam with polarization order P = 
2q2 = 8. 

 

Fig. 3. Output beam patterns of VVBs with: (a) m = 2, P = 12 and m = 12, P = 2, respectively. 
White arrows indicate the direction of analyzer and color bar reveals the relative optical 
intensity. 

Taking the advantage of repeated adhesive ability of separate LCP films, integrated and 
reconfigurable optical paths can be realized by stacking and reordering different optical 
functional films. The polarization order and topological charge of generated VVBs can be 
tuned separately by changing and rearranging the films. For example, VVBs with m = 2, P = 
12 and m = 12, P = 2 are shown in Figs. 3(a) and 3(b), which are obtained by reordering the 
two LCP q-plates with q = 1 and 6 in our integrated thin-film device. They all exhibit good 
performances and match well with theoretical expectations. 

3. Conclusion 

In summary, we demonstrate a compact and reconfigurable strategy to generate VVBs based 
on stacking LCP films with both homogeneous and spatially variant optical axes. By 
changing and rearranging the separate films, the polarization order and topological charge of 
generated VVBs are controlled independently. Moreover, other complex optical field, such as 
Airy beam [32], Airy-vortex beam [33,34] and beam array [35,36], could also be realized. 
Besides, the flexibility of LCP films makes their covering on other optical elements with 
curved surfaces possible. This low-cost, light-weight versatile technique dramatically reduces 
the volume of optical system and has great potentials in optical communications, 
virtual/augmented reality display and optical computing. 
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