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Phonon-polaritons in quasiperiodic piezoelectric superlattices

Xue-jin Zhang, Yan-ging Lu,?’ Yong-yuan Zhu,” Yan-feng Chen, and Shi-ning Zhu
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China

(Received 14 June 2004; accepted 17 August 2004

Phonon-polaritons are studied both theoretically and experimentally in a one-dimensional
two-component generalized quasiperiodic piezoelectric superlattice. The experimental observation
of phonon-polaritons through dielectric abnormality is carried out at the microwave region. Some
potential applications are discussed.2@04 American Institute of Physics
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As an elementary excitation in solid-state physics, the In the absence of translational symmetry, the Bloch
polariton is due to the coupling between the photon and théheory is no longer adequate for quasiperiodic structures. But
polar elementary excitation. Owing to the unusual propertiesaccording to the projection methd¥ithe 1D quasiperiodic
the polaritons are of great interest from both a fundamentastructure may be considered as the projection of a two-
and an applied perspective. Recently, a polariton laser basgtimensional2D) periodic structure. As an example, we con-
on exciton-polaritons has been demonstrated in a semicogider a GQPSL with ar point group which consists of two
ductor microcavity. As for the phonon-polaritofi? the rap- ~ building blocks,A and B, with each block made up of one
idly varying refractive index is made use of in constructing Positive and one negative ferroelectric domeanferroelec-
prisms for infrared spectroscopyEnsued from the study of tric material is plezoglectr)cThe widths of blocksA andB
artificial microstructure materials, much effort has been de@'€!a andlg, respectively. We assume that the negative do-
voted to the research on the phonon-polariton. In the periodi@'@in of blocksA andB has the same width shown in Fig.
superlattice, a periodic potential with a giant period, in con-1(®. Different from the F|bonaCC| sequence, the projection
trast with the atomic period, results in the formation of theangle becom(_as an adju.stable structure parameter in the
miniature Brillouin zone. By virtue of this, the far-infrared GQF}J—SL’ anq Its tangent is not fixed as a golden r_atlo_, 1€
Raman laser and Reststrahlen filter made of AlAs/GaAs su(1+V5)/2' Figures {b) and 1c) show_ two schematic (.j'a'
perlattices become realizableAnother property of the grams of ”“? GQP_SL structures: one is the so-called side-by-
phonon-polariton, significantly reduced group velocity, canSide  confi ;Jrat|on, the ~ other the head-to-head
be utilized in solid-state traveling wave deviCelloreover, configuration.” In both cases, the ple;oelectrlc coefﬁmen't,
e photonc band GagPE) I wich the propagtion of 2% SR enscr i e Sane or comane wih
electromagneti¢CEM) waves is forbidden, will be affected by '

) . . asiperiodically modulated piezoelectric coefficients in the
the presence of the phonon-polariton in photonic crystal%éplgl_ todically u piez ! Icl !

composed of polar materiafs’ It is shown that the phonon- With a GQPSL aligning along the axis in Fig. 1b), a

polariton coupling flattens the photonic bands and is favor'vertically incidenty-polarized EM wave propagates into it on
able for opening up the PBG. the left-hand side surface. The properties of the phonon-

~ On the other hand, the discovery of quasicrystals hagojariton can be obtained from the following piezoelectric
fired up a new field of condensed-matter physics and givelng motion equationt:

rise to many practical applications since 19840r example,
the multiwavelength second-harmonic generation and the di-
rect third-harmonic generation have been realized in a Fi-
bonacci superlatticE:*2In the field of photonic crystals, the
completesPBG in 12-fold symmetric guasicrystal_s has_been P,(x,1) = — e,,(X)Sy(X, 1) + 80(8%_ 1E,(x1),
reportedl. Furthermore, compared with a one-dimensional
(1D) two-component Fibonacci superlattice, a 1D two-
component generalized quasiperiodic superlatt@®PSL) #Sy(x,1) _dTy(X1)
possesses more freedom for applicatiths. P a2 o2 (1)

In this Letter, we investigate the influence of structural
variation of the piezoelectric superlattice upon the phononwhereT;, S, E;, andP, are the stress, strain, electric field,
polaritons on the basis of a 1D two-component GQPSL. Weahd polarization, respectivelff;, e,,(x), £7;, andp are the
measured the dielectric function of the GQPSL at the micro€lastic coefficient, piezoelectric coefficient, dielectric coeffi-
wave region, thereby obtaining the physical information re-Cient, and mass density, respectively. The damping of mate-

quired to deduce the properties of polaritdidhe possible Tials has been omitted here. The second equation of Bq.
applications are discussed. implicates that a longitudinal wav@ introduces a transverse
electric polarizationP,, which can interfere with the EM
wave. For an infinite GQPSL structure, the quasiperiodically
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Florida, Orlando, FL 32816, USA; electronic mail: lyg@ieee.org %OdUIated piezoelectric coefficient,,(x) can be written,
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T1(x1) = CESI(x,1) + 50 Ex(x,1),
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FIG. 1. (Color onling Schematic of a 1D two-
component GQPSL structuréa) composed of two
building blocks A and B, (b) with side-by-side 180°
reversed ferroelectric domains, orwith head-to-head
180° reversed ferroelectric domains. The arrows indi-
cate the directions of spontaneous polarizatiaf.Pi-
ezoresponse scanning force microscopy of a GQPSL
based on the LiTa@single crystal. It is the image of
phase response.

— >z
2(1 + 7)1 sin(Gy pl/2) sin X, The GQPSL based on the congruent Litahgle crys-
fon= 5 G2 X (@) talis fabricated by the method of electric-field poliffgrhe
mn mn

GQPSL used in our experiment is 640 blocks with a total
whereG, ,=2m(m7+n)/D is the reciprocal vectofm,n are  length of about 8.2 mm along theaxis. The other structure
two integer$, D=17,+lg is the average structure parameterparameters are=0.5645,1=5.75um, 1,=14.41 um, and
of the GQPSLX,,n,=m(l+ n)(nly+mlg)/D,7=tan §, andfis  1g=10.04,um respectively. The widths of domains after pol-
the adjustable projection angle. Using Ed), the average ing are determined with piezoresponse scanning force mi-
dielectric functiones(k, w) of the GQPSL is found to be croscopy, in which the inverse piezoelectric effect is used.
The z surface of the GQPSL was polished, and the phase
response was recorded, as shown in F{d).1n this Letter,
the material constants of the congruent Lita®ystal are
selected from Ref. 21. The dispersion relation of the phonon-
polariton in the GQPSL calculated from Egf) is shown in
Fig. 2@). Figure 2b) shows that for a phonon-polariton in
the GQPSL, there are three branches forming two separate
wherek andw are the wave vector and angular frequency ofband gaps, while in the ionic crystal there are only two
EM waves.L is the whole length of the GQPSL, and ,n’ branches with one band gap. There are not only transverse
are also two integers. From E@) we can see that the reso- phonon-polaritons, but also longitudinal phonon-polaritons
nance, which engenders phonon-polaritons, will occuin piezoelectric superlatticé§® As shown above, the
aroundw?=G2, v? [v=(CE,/p)¥2is the phase velocity of the phonon-polaritons in this case are longitudinal phonon-
longitudinal superlattice vibratign Hence, the positional polaritions. When a-polarized EM wave propagates along
distribution of resonance peaks reflects the quasiperiodicitjhex axis of the GQPSL, it will be strongly reflected as long
of the GQPSL structure. as its frequency lies in the band gap of the phonon-polariton.

According to Maxwell’s relation, the dispersion relation By use of this property, the reflector and polarizer based on
of the phonon-polariton in GQPSL can be gotten easily. Thatheé phonon-polariton can be made.
is, The frequency distribution of the phonon-polaritons ex-
hibits a quasiperiodic property of the GQPSL, in accordance
ki w? = g5k, w), (4)  with the reciprocal vector. In the periodic structure. the fre-
guency positions of phonon-polaritons are equidisﬁﬁie—

2
e
ex(k,w) = 8%1_ —22 E fm,nfm’,n’

O=mn,m’ ,n’
G+ 2Gmk+ K (-
pr - Ci(Gm,n + k)z 0

ei(Gm,n*'Gm’,n’)de, ©)]

wherec is the phase velocity of the EM wave in free space.
In the very long wavelength region, the wave vector is

very close to zero, and to a good approximation the dielectric 4. 0 159 ; — 5
function can be considered to depend only upon the fre- Y e
quency of waves. Taking the damping of the material into ——
account, Eq(3) can be changed to the form 3 59/(03 158 - q
2 fof 2 i )/(1[,32)“
s K mnlm’ ,n’®Omn P /o
gx(w) =& 1_r E 2 2 - Ez; 2 157 .
mam’,n’ @ " Pmn tlwy 5 o/
38
L (25)1,1)
(G 1 +Gp’ 5 L i
xf e'( mntGm’ n )de , (5) 1 on 1.56
0
.0
where K?=¢5,/(CEeqs3) is an electromechanical coupling o ‘ . 15 ‘ ;
coefficient, w?, .= G2 2, wm, iS resonance frequencies of o000 o0z o 0.00M 00000 000z 00004
) \ \ kDI(2r) kD/(2r)

longitudinal superlattice vibrations in the GQPSL, i.e., the

freque_zncy positions '?f phono_n-pola_\ritons, apdepresents a  Fig. 2. Normalized dispersion curves of) the longitudinal phonon-
damping constant with the dimension of frequency. polaritons of the GQPSL angh) the enlarged one labeled @k 1).
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e (a) theoretical curves are quite similar to those measured.
? i The frequency region for phonon-polaritons of the
GQPSL falls into the microwave band, which is determined
by its average structure parameter. It is noteworthy that the
e epitaxial technique, such as magnetron sputtering, can bring
the frequency of phonon-polaritons up to the far-infrared re-
000 1200 gion by adjusting the average structure parameter of the
1 GQPSL. Then, the frequeny of phonon-polaritons can span
1 the operational range of most optoelectronic devices.

In conclusion, the phonon-polariton in the 1D two-
32 component GQPSL was studied in theory and experiment.
- The quasiperiodic modulation gives rise to the quasiperiodic
frequency distribution of phonon-polaritons. If the piezoelec-
tric coefficient is modulated aperiodically, it will introduce
aperiodical frequency distribution of phonon-polaritons. This
property can lead to the practical applications, such as for
FIG. 3. The dielectric function curves for the GQPSB) The measured WDM devices in optical communications, and for EM wave

results and(b) the calculated results choosing damping constant (or sound waveproof materials in environmental protection.
=0.003w, ;. The solid lines represent the real part, and the dashed lines the
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