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With two waves incident on a two-dimensional (2D) nonlinear superlattice, the
relation between 11, and the output intensities is bistable. Here, the $ is the relative
phase between the two waves. That is to say, as $ is slowly varied within one cycle, a
hysteresis loop in the $-output  relation can be traced out. A very low threshold power
is required in an appropriate 2D nonlinear superlattice for the optical bistability.

PACS. 42.65.P~ - Optical bistability, multistability, and switching
PACS. 42.25.F~  - Diffraction and scattering.

In the recent years, nonlinear responses in intensity-dependent dielectric superlattices
and multilayers have received much attention for their potential applications in optical com-
munications and computing. In one-dimensional cases, some interesting phenomena, such
as power bistability and frequency bistability [l-3], limiting [4],  self-pulsing and chaos [5,6],
and soliton [7], have been discovered. These phenomena are related to the transition be-
tween forbidden transmission states (FTS) and the allowed transmission states (ATS). Very
recently, the studies of the nonlinear responses of the twodimensional (2D) superlattices,
i.e., with their refractive index periodically modulated in two-dimensions, are beginning.
In the linear cases, near the Bragg condition, the light transmission strongly depends upon
the index-modulation (IM) strengths. Through the Kerr-form nonlinearity, the interference
in the transmission field will perturb the IM strengths. Thus a positive feedback is formed.
Through this new type of feedback mechanism, bistability, self-pulsing and chaos, have been
discovered [8-lo]. In the former paper of the present authors [ll], the bistability related to
the transition between a FTS and an ATS was demonstrated in the case of two incident
waves. However, the q-output relation has not been studied, where 1c, is the relative phase
between the two incident waves. In this letter, we show that, as the $ is slowly varied, a
hysteresis loop in the @output  relation is traced out. We believe that this type of optical
bistability, will be of benefit to the applications of 2D nonlinear superlattices in integrated
optical devices.

Our theoretical model is applied to an isotropic lossless Kerr-form nonlinear dielectric
superlattice. The linear periodically modulated refractive index is written in the form
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Shift-
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FIG. 1. Four-wave diffraction in the two-dimensional periodic superlattice. (a) Schematic diagram
of four-wave diffraction in real space. The dotted lines denote the incidence-dependent IM
along x-direction formed by the incident fields Eini and EinZ. (b) Bragg condition with

four reciprocal points located on the Ewald sphere.

n = 72, t 12, cos(H,z)  + n, COS(H,5): (1)

where n, and n2 are IM strengths along z and x direction, respectively, and satisfy nz, n, <
n,; H, and N, denote the periodicity  in reciprocal space. Two coherent incident waves

Einl and Ein2, with the same incident Bragg angle, propagate symmetrically down the 2D
superlattices [see Fig. l(a)]. The wave vectors satisfy the exact Bragg condition that four
reciprocal points are located on the Ewald sphere.  Thus four Bloch diffracted waves will
be excited in the medium [see Fíig.  l(b)]. When the exact Bragg condition is satisfied, the
field in the medium can be written as a sum of two forward and two backward diffracted
waves

B(z) = E,(z)  exp(iK, . T) $ Eh(z) exp(iKh  . T) t E-,(z)  exp(-K . T)

tE_h(z)exp(--iKh  . T),
(2)

w h e r e  -hí,  = Kh = k, . k, is the average wave number in the medium. The kerr-form
nonlinearity can be described by the nonlinear polarization term

PI\TL(T) = non,lE12E/4x; (3)

where n, is the nonlinear index. Inserting Eqs. (l)-(3) into Msxwellís wave equations, we
obtain under the Bragg condition and in the slowly varying envelope approximation

d&
-ZZ

dz -i&[26n,E, + (M, t 6n,)&  t 6n,-,E.-, + (M, t 6nZ)E_h]; (4a)

-



VOL. 34 XIANG-FEI CHEN,  YA-LIN  LU, YAN-QING LU, 4ND NAI-BEN MING 1147

- = -i&[(m, + Snz)E,  + 26n,Eh  + (m, + 6nz)Ee0 + 6nz+,E_h];dEh
W)dz

- = -i-&j-$%&E,  + (kf, + h,)& + 26%$-,  + (fM, + ëh;)&]; (4C)
dE_,
dz

- = -i~[(mzt6n')Eot6dEh
n,+,Eh t (m, t Jn,)E-,  + 26n,E-h]; (4d)dz

where MZ = 2n,/n0, MZ = 2nZ/n0,  Sn, = a(jE,I'+ IEh/'+ IE-,12t IE_h12), 6n, =
2a(E;tE_, t  E,ëE_h), Sn, = 2cr(E,E~ t Ez,E_h), 6n,+, = 2a(ElE_h), 6n,_, =
2a(E,ET,),  and 8~ is the Bragg angle. Here, cr is defined as n,/n,. The boundary condi-
tions of the Eqs. (4a)- (4d) are E,(O) = Einl, Eh(0) = Ein2, E-,(-l) = 0, E_h(-l) = 0.
For convenience, we define the parameter y as IE,n112/IE;n:!/2, and 1,, as IEin112+lEin2/2. I,,
is the total incident intensity.

In terms of the linear results of Ref. [12], when n, > nZ, the wave vectors of Bloch
waves have imaginary part so that the Bloch waves are evanescent. This is very similar
to the situation in which a wave located in the forbidden gap propagates down an 1D
superlattice, and then these are so-called forbidden light transmission. On the contrary,
when n, < nz, the wave vectors of Bloch waves are real, and then the Bloch waves will
propagate through the medium unimpeded. These are so-called allowed light transmission.
The IM-transmittance relation in the linear case is plotted in Fig.. 2. The transmittance
is defined as (I0 f Ih)/lin. There exist two distinct regions obviously in the figure. One is
tbe region in which n, > n,. The amplitudes of the Bloch waves decay exponentially with
propagation distance into the medium, and then the transmittance is very weak. These are
related to the FTS. The other is the region in which n, < n,. The amplitudes of the Bloch
waves will oscillate with the IM strengths. These are related to the ATS. For convenience,
we define the parameter m as n,/n,. Thus the case of m < 1 is related to the FTS, and
that of m > 1 is related to the ATS.

In the presence of two incident waves, the interference formed by two waves in the
medium is characterized by a spatially periodic variation of the intensity. Through Kerr-
form response nonlinearity, as shown in Fig. l(a), the incidence-dependent periodic IM
along x-direction are constructed by the two waves, where its periodicity is characterized
by HZ in reciprocal space and its strength is proportional to the incident intensities. In
the figure, the dotted lines denote the incidence-dependent IM along x-direction. This kind
of process is similar to that of volume grating formation. It is usual that there exist a
shift between the incidence-dependent IM and the preconstructed IM [namely the dotted
lines and the solid lines in Fig. l(a) are not overlapped]. The total IM strength along
the x-direction, and then the effective m, will vary with the shift. When the shift is zero,
the incidence-dependent IM matches the preconstructed IM, and then the effective n will
reach its maximum at a certain incident intensity. On the contrary, when the shift reaches
its maximum, the effective m will reach its minimum. Since the incidence-dependent IM is
formed by the two incident waves, the shift is determined by the relative phase I/J between
the two waves. In the case of $J = 0, the shift is zero, and then the effective m reaches its
maximum. In the case 01 $J = K, the shift reaches its maximum, and then the effective m
reaches its minimum. With the 1c, scanning between 0 and 2~, the effective m will vary
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FIG. 2. The relation between transmittance

and index-modulation strengths un-
der the exact Bragg condition. There
are two distinct regions. Region
a is related to the forbidden trans-
mission state. Region b is re-
lated to the allowed transmission
state. The structure parameters
k,l/ cos BB = 2.7 x 103.
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FIG. 3. Optical phase bistable behavior in
the $-output relations obtained by

step-input numerical solution. The
structure parameters k,l/ cos 6'~ =

2.7 x 103. A42 = 5 x 10-3, A4= =
4.7 x 10P3,  = 1, and Ii, = 0.157
for the solid line. k,l/ cos 0~ = 2.7

x 103.  A42  = 6 x 10-3, A/r, = 6.2 x

10e3,  7 = 1, and 1i, = 0.07 for the
dotted line. Ii, is measured in Iunit,
with olunir = 10V3.

between its minimum me, and its maximum mmax. It should be mentioned that mmax.
is proportional to the incident intensities, while rnmin is inversely proportional to them.
When the total incident intensity exceeds the threshold, rnkn < 1 and mmax > 1. That is
to say, when the $ is varied within one cycle; for a 2D nonlinear optical superlattice, the
effective m can pass across the transition point m = 1. Thus a transition between the FTS
and the ATS will occur. For a 2D optical superlattice with its m near 1, the threshold for
the transition should be low. We expect that the $-output relation is bistable through this
transition.

Because of the complexity of these equations, Eqs. (4) can be only solved by numerical
methods. We use the step-input method to integrate the Eqs. (4). The curves of output
power versus the relative phase $ in 2D nonlinear superlattices plotted in Fig. 3, where the
linear m < 1 for the solid line and the linear m > 1 for the dotted line. In the figure, the
low transmission is related to the FTS, namely the effective m < 1; the high transmission is
related to the ATS, namely the effective m > 1. It can be seen that the hysteresis loop can

--
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be obtained through the variation of the 4. Thus when the incident intensity exceeds the
threshold, the $-output relation is bistable in a 2D nonlinear superlattice with its linear m
larger than 1 or less than 1. For a 2D optical superlattice with its m near 1, the 4 bistable
threshold can be very low. In the example as shown in Fig. 3, the bistable threshold is less
than 0.07 in the case of m > 1 and is less than 0.15 in case of m < 1.

In conclusion, we have numerically demonstrated that, in the presence of two incident
waves, the $-output relation is bistable through the IM mechanism. The threshold power
for the bistability can be very low. This type of optical bistability might be useful to
construct some special 2D optical bistable devices and phase-control switch.

This work is supported by a grant for the Key Research Project in Climbing Program
from the State Science and Technology Commission of China.
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