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Optical Bistability in Incident-Dependent Two-Dimensional 
Nonlinear Optical Superlattices * 

CHEN Xiang-fei, LU Ya-lin, LU Yan-qing, MIN Nai-ben'(N. B. Ming) 
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 

'also CCAST (World Laboratory), P. 0. Box 8730, Beijing 100080 

(Received 9 September 1996) 
It is shown that, when two coherent waves are obliquely incident to a one-dimensional nonlinear 
optical superlattice containing Kerr-form dielectric nonlinearity, an incident-dependent t w e  
dimensional nonlinear optical superlattice can be constructed. This structure can be bistable. 
There exist two types o f  optical bistable mechanism, i. e., the index-modulation mechanism and 
distributed feedback mechanism. Owing to the index-modulation mechanism, the threshold for 
the bistability is lower than that o f  a more traditional one-dimensional distributed feedback 
structure. 

PACS: 42.65. Pc, 42.25. Fx 

Since optical bistability in one-dimensional (1D) nonlinear superlattices was first disco- 
vered by Winful et al. more than ten years ago,' the idea has been developed in a number of 
 paper^.^-^ Very recently, optical response in a two-dimensional (2D) nonlinear superlattice (a 
nonlinear dielectric medium with its refractive index periodically modulated in two dimensions) 
was also studied. Optical bistability and self-pulsing were discovered in 2D nonlinear superlat- 
tices, both theoretically and experimentally.'-' In the presence of Kerr-form nonlinearity, the 
interference in the transmission field will perturb the index modulation (IM) strength. Thus 
a positive feedback is formed. This new type of bistable mechanism, named IM mechanism, 
has been demonstrated.' In the present paper, with two coherent waves obliquely incident to a 
1D nonlinear superlattice, we show that there exist two types of bistable mechanism, i.e., IM 
mechanism and distributed feedback (DFB) mechanism. Owing to the additional mechanism 
(IM mechanism), the bistable threshold can be lower than that of a DFB structure. 

We consider an isotropic lossless nonlinear medium with its refractive index modulated 
periodically in one dimension. The periodicity is expressed by vector H, in reciprocal space. 
Then the one-dimensional linear and periodically modulated refractive index is defined by the 
following equation 

where n, << no. Two coherent incident waves, with the same incident angle, are symmetrically 
incident to the 1D nonlinear superlattice, as shown in Fig. 1. In the presence of one incident 
wave, two diffracted waves will be excited in the 1D superlattice. Correspondingly, in the 
presence of two incident waves, four diffracted waves will be excited. The Kerr-form nonlinearity 
can be described by the nonlinear polarization term 

n = no + n,cos(H,z), (1) 

where n, is the nonlinear index. The following scalar Maxwell's equations describe the light 
transmission in the nonlinear medium : 

n 

where w is the light frequency, and c the speed of light in vacuum. Near the Bragg condition, 
one can write the field in the medium as a sum of two forward and two backward diffracted 
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where KO = Kh = km, and km = now/c  is the wave number in the average refractive index. 
Furthermore, the Bragg condition leads to the following equation 

H ,  = 2kmcos(BB), ( 5 )  

where e, is the Bragg angle. The four diffracted waves are coherent, and thus obviously interfere 
each other in the nonlinear medium. This four-wave mixing process, through the Kerr-form 
I-ronlinearity, leads to the formation of the other periodical refractive index modulations along 2, 
TC + i, z - z directions. Then a 2D periodically modulated structure is constructed.* Compared 
with a pre-constructed 2D optical superlattice, the modulation parameters, i. e., modulation 
periodicities and modulation strengths, are mainly determined by the two incident waves. This 
incident-dependent (ID) periodically modulated structure is called the ID 2D nonlinear super- 
lattice in the present paper. In the ID 2D nonlinear superlattice, the modulation strengths 
along z, x + z ,  z - z directions are proportional t o  d m i .  Where l i n l ,  Iinz are intensities 
of the two incident waves. Therefore, there are two types of positive feedbacks in an ID 2D 
nonlinear superlattice. One is the well-known DFB, and the other is the IM feedback. Owing 
to the contribution of the refractive index modulation, the bistable threshold should be lower 
than that of a more traditional 1D DFB structure. 
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Fig. 1. Schematic diagram of four-wave difiac- 
tion in the ID 2D nonlinear superlattice, the dot- 
ted lines represent the ID periodical modulation 
along %-direction. 
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Fig. 2. Bistable behavior in the incident- 
diffracted relations in ID 2D nonlinear super- 
lattices obtained by step-input numerical solu- 
tion. The structure parameters Ap = 0, M,  = 
~ x K - ~ ,  k,lJcos$ = 3.5x104, andy=0.3,  here 
TZ,I , , ;~ = 

Inserting Eqs. (l), (2)) (4), and ( 5 )  into Eq. (3), we obtain, in the slowly varying envelope 
approximat ion 
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6 is the incident angle of incoming radiation, and 77 represents the angular deviation from the 
Bragg angle e,. 

The four diffracted waves at their exit boundaries are determined by the field equations, the 
material equations, and the boundary conditions, Eo(0) = E i n l , E h ( O )  = Einz,E-o(-l) = 0, 
E-h(- l )  = 0. For convenience, we define a parameter y as \Ein11 /IEin21 , and make 0 5 y 5 1. 
Note in the case of y = 0, the optical system is an ordinary DFB system, and the resonance is 
mainly obtained through the DFB. Otherwise, when y is of order of 1, an ID 2D superlattice 
will be constructed, and the resonance is obtained through IM feedback and DFB. In an ID 2D 
nonlinear superlattice, a suitable axis along 2-direction can be selected to make the two incident 
waves in the same propagating phase. That is to say, four diffracted waves intensities at their 
exit boundaries are independent on the transmission phases of the two incident waves. So, one 
can neglect the influence of the phases of the two incident waves, and always make boundary 
conditions satisfy &(o) = d-), Eh(()) = d m ,  E-o(-l) = 0, E-h(- l )  = 0. 
Here l i ,  = IE;,1I2 + IEin2I2 is total incident intensity. 

Because of the complexity of these 
equations, the solutions must be achieved 
by numerical method. The input-output 
relation is plotted in Fig.2 for an ID 
2D nonlinear superlattice with Ap = 0, 

and y = 0.3. At lower incident intensity, 
the transmitted intensities IO and I h  are 
weak. Once above the switch-on intensity 
(critical intensity), the transmitted inten- 
sities jump from the lower intensities to 
higher intensities in a discontinuous way. 
Thus in the case of two incident waves, 
the output intensities can be bistable. It 

0.0 0.4 0.8 should be mentioned that the bistability 
discussed in Ref. 8 is related to the trans- 
mission transition in the allowed band. As 
shown in Fig. 2, the bistability discussed 
here is related to the transition between 
the allowed transmission and the forbidden 

transmission. At a certain total incident intensity, the larger the y, the stronger the IM feedback 
is. Then the switch-on intensity becomes lower. We plot y-switch-on relation in Fig.3. It 
is seen from this plot that the switch-on intensity will decrease with y. Therefore, in the 
general case, a relatively low bistable threshold exists in the ID 2D nonlinear superlattice due 
to contribution of the IM mechanism. 

In conclusion, we have demonstrated that an ID 2D nonlinear superlattice constructed 
originally from a 1D superlattice by two incident waves is bistable. The optical bistability 
originates from the IM and DFB mechrylism. The threshold for the bistability is relatively low 
due to the IM feedback. 
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Fig. 3. The r-switch-on relation by nu- 
merical calculations. The structure parameters are 
the same as in Fig. 2. 
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